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1. Vectors

1.1 Introduction

Definition 1 (Vectors). Vectors are mathematical objects with both magnitude and
direction.

Geometrially, vectors can be thought of as arrows/direced line segments in space in space.

Figure 1.1: A Vector

Example (Examples of vectors). Here are some important examples of vectors

• The displacement of a particle is a vector.

• The velocity of a particle is a vector.

• The force acting on a particle is a vector.

Notation. Vectors can be denoted in 3 ways,

• Using boldface notation: V

• Underlining: V

• An arrow over the symbol: ~V

1.2 Euclidean Three Space E3

Definition 2 (Euclidian Three Space). Euclidean Three Space is the set of all ordered
triples of real numbers.

E3 = {(x, y, z)|x, y, z 2 R} (1.1)

The axes of E3 are the x, y and z, i.e.
x = (x, 0, 0), y = (0, y, 0), z = (0, 0, z) (1.2)

We orient the axis according to the right hand rule. This is shown in the following
diagram:
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y

z

x

Figure 1.2: Axes in E3

Note. We need to pick an origin and stay with it. We will use the origin (0, 0, 0).

1.3 Vectors in E3

1.3.1 Distance in E3

Let P and P
0 be points in E3. And let P = (x, y, z) and P

0
= (x

0
, y

0
, z

0
).

Definition 3 (Distance in E3
). The distance between P and P

0 is defined as:

d(P, P
0
) =

p
(x� x

0)2 + (y � y
0)2 + (z � z

0)2 (1.3)

This is illustrated in the following diagram

Figure 1.3: Distance in E3
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1.3.2 Vectors in E3

Definition 4 (Vectors in E3
). A vector in E3 is an ordered triple of real numbers.

~v = (v1, v2, v3) (1.4)

Notation. We can also represent vectors using column notation

v =

2

4
v1

v2

v3

3

5

1.4 Vector Algebra

1.4.1 Vector Magnitude

Definition 5 (Vector Magnitude). Let ~v = (v1, v2, v3) be a vector in E3. The magni-

tude of ~v is defined as:
k~vk =

q
v21 + v22 + v23 (1.5)

1.4.2 Vector Addition

Definition 6 (Vector Addition). Let ~v = (v1, v2, v3) and ~w = (w1, w2, w3) be vectors
in E3. The sum of ~v and ~w is defined as:

~v + ~w = (v1 + w1, v2 + w2, v3 + w3) (1.6)

Geometrically this can be seen as the diagonal of a paralleleogram. Geometrically it is
clear that you get the same effect as travelling along ~v and then ~u

Figure 1.4: Vector Addition
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Vector Addition Properties

Theorem 1 (Commutativity). Suppose ~v and ~w be vectors in E3.
If ~v = (v1, v2, v3) and ~w = (w1, w2, w3) be vectors in E3, then

~v + ~w = ~w + ~v (1.7)

Proof. Let ~u,~v, ~w be vectors in E3. Then

~v + ~w =

2

4
v1

v2

v3

3

5+

2

4
w1

w2

w3

3

5 =

2

4
v1 + w1

v2 + w2

v3 + w3

3

5

=

2

4
w1 + v1

w2 + v1

w3 + v2

3

5 commutativity in R

=

2

4
w1

w2

w3

3

5+

2

4
v1

v2

v3

3

5 = ~w + ~v

Theorem 2 (Associativity). Suppose ~u, ~v and ~w be vectors in E3.
If ~u = (u1, u2, u3), ~v = (v1, v2, v3) and ~w = (w1, w2, w3) be vectors in E3, then

~u+ (~v + ~w) = (~u+ ~v) + ~w (1.8)

Proof. Let ~u,~v, ~w be vectors in E3. Then

~u+ (~v + ~w) =

2

4
u1

u2

u3

3

5+

 2

4
v1

v2

v3

3

5

2

4
w1

w2

w3

3

5
!

=

2

4
u1 + (v1 + w1)
u2 + (v2 + w2)
u3 + (v3 + w3)

3

5

=

2

4
(u1 + v1) + w1

(u2 + w2) + v2

(u2 + v3) + w2

3

5 commutativity in R

=

2

4
u1 + v1

u1 + v1

u1 + v1

3

5+

2

4
w1

w2

w3

3

5 = (~u+ ~v) + ~w
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1.4.3 Scalar Multiplication

Vectors can be multiplied by scalars to get a new vector. This is called scalar multipli-

cation. The direction of the new vector depends on the sign of the scalar.

v

�v when � > 0

�v when � < 0

Definition 7 (Scalar Multiplication). Let ~v = (v1, v2, v3) be a vector in E3 and � 2 R
be a scalar. The scalar multiplication of ~v and � is defined as:

�~v = (�v1,�v2,�v3) (1.9)

Multiplying by a Scalar

Let ~v be a vector in E3 and � be a scalar. Then:
• If � > 0, then �~v is a vector in the same direction as ~v but with magnitude
�k~vk

• If � < 0, then �~v is a vector in the opposite direction as ~v but with magnitude
|�|k~vk

Scalar Multiplication Properties

Theorem 3 (Distributivity over Scalar Multiplication). Let ~u and ~v be vectors in E3

and � be a scalar. Then
�(~u+ ~v) = �~u+ �~v (1.10)

Proof. Let ~u,~v 2 E3

�(~u+ ~v) = �

2

4
u1 + v1

u2 + v2

u3 + v3

3

5 =

2

4
�(u1 + v1)
�(u2 + v2)
�(u3 + v3)

3

5

=

2

4
�u1 + �v1

�u2 + �v2

�u3 + �v3

3

5 =

2

4
�u1

�u2

�u3

3

5+

2

4
�v1

�v2

�v3

3

5 = �~u+ �~v
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Theorem 4 (Associativity). Let ~v be a vector in E3 and �, µ be scalars. Then

(�µ)~v = �(µ~v) (1.11)

Proof. Let ~v 2 E3

(�µ)~v = (�µ)

2

4
v1

v2

v3

3

5 =

2

4
(�µ)v1
(�µ)v2
(�µ)v3

3

5

=

2

4
�(µv1)
�(µv2)
�(µv3)

3

5 = �

2

4
µv1

µv2

µv3

3

5 = �(µ~v)

Theorem 5 (Distributivity over Vector Addition). Let ~v be a vector in E3 and �, µ be
scalars. Then

(�+ µ)~v = �~v + µ~v (1.12)

Proof. Let ~v be a vector in E3

(�+ µ)~v = (�+ µ)

2

4
v1

v2

v3

3

5 =

2

4
(�+ µ)v1
(�+ µ)v2
(�+ µ)v3

3

5

=

2

4
�v1 + µv1

�v2 + µv2

�v3 + µv3

3

5 =

2

4
�v1

�v2

�v3

3

5+

2

4
µv1

µv2

µv3

3

5 = �~v + µ~v

Theorem 6 (Identity). Let ~v be a vector in E3. Then

1~v = ~v (1.13)

Proof. Let ~v be a vector in E3

1~v = 1(v1, v2, v3) = (1v1, 1v2, 1v3)

= (v1, v2, v3) = ~v
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1.4.4 Vector Subtraction

Definition 8 (Vector Subtraction). Let ~v and ~w be vectors in E3. The difference of
~v and ~w is defined as:

~v � ~w = ~v + (�1)~w (1.14)

Geometrically we can see this in the following diagram:

v

u�u

v

v � u

v � u

1.4.5 Unit Vectors

Definition 9 (Unit Vector). A unit vector is a vector with magnitude 1. The unit
vector in the direction of ~v is denoted by v̂. Unit vector is calculated by:

v̂ =
~v

k~vk (1.15)

1.5 Standard Basis

Standard basis vectors are also known as standard unit vectors. These are used to
represent vectors in E3

Definition 10. The standard basis vectors are defined as follows:

î = (1, 0, 0)

ĵ = (0, 1, 0)

k̂ = (0, 0, 1)

such that | î |=| ĵ |=| k̂ | .

Any vector can be represented using standard basis vectors.

Suppose you are a given a vector ~v = (v1, v2, v3). This can be represented as follows:

~v =

2

4
v1

v2

v3

3

5 = v1î+ v2ĵ + v3k̂ (1.16)
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Example. Let ~v = (2, 3, 4). Then,

~v = 2̂i+ 3ĵ + 4k̂

= 2(1, 0, 0) + 3(0, 1, 0) + 4(0, 0, 1)

= (2, 0, 0) + (0, 3, 0) + (0, 0, 4)

= (2, 3, 4)

Figure 1.5: Standard Basis Vectors

Algebra with Standard Basis Vectors

Example. Let ~v and ~w 2 E3

~v ± ~w =

2

4
v1 ± w1

v2 ± w2

v3 ± w3

3

5 = (v1 ± w1)̂i+ (v2 ± w2)ĵ + (v3 ± w3)k̂

Example. Let ~v and ~w 2 E3

�~v =

2

4
�v1

�v2

�v3

3

5 = (�v1)̂i+ (�v2)ĵ + (�v3)k̂

Note. The 0 vector is:

0 =

2

4
0
0
0

3

5 = 0̂i+ 0ĵ + 0k̂

Any vector ~v 2 E3 added to the 0 vector is itself:

~v + 0 = ~v

Here is an example of algebra with standard basis vectors:
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Example. Let ~v = (2, 3, 4) and ~w = (1, 2, 3). Then,

~v + ~w = (2, 3, 4) + (1, 2, 3)

= (2 + 1, 3 + 2, 4 + 3)

= (3, 5, 7)

Alternate Notation for Standard Basis Vectors

Notation. We can change notation for standard basis vectors as follows:

î = ~e1 ĵ = ~e2 k̂ = ~e3

and therefore we can write:

~v = v1î+ v2ĵ + v3k̂ =
3X

a=1

va~ea

1.6 Position Vectors

Definition 11. A position vector is a vector that represents the position of a point
in space relative to the origin, O.

Let any vector ~v be the position vector of a point P in space. Then, the coordinates of P
are given by the components of ~v:

Figure 1.6: Position Vector

So the position vector of P is given by:

~v =

2

4
x

y

j

3

5 = xî+ yĵ + kk̂ (1.17)
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1.7 Scalar Product

Scalar product is also known as dot product, is a function denoted by ·:

· : E3 ⇥ E3 7! R

i.e. it takes two vectors and returns a scalar.

Definition 12 (Planar Angle). Let ~v and ~w be two vectors in E3 and ✓ 2 R.

The planar angle between two vectors ~v and ~w is the angle ✓ between them in
the plane spanned by ~v and ~w.

u

v

✓

Not a planar angle

u

v

✓

Not a planar angle

Choose the planar angle ✓ such that

0  ✓  ⇡

.

Definition 13 (Scalar Product). Let ~v and ~w be two vectors in E3 and ✓ 2 R be the
planar angle between them.
Then, the scalar product of ~v and ~w is defined as:

~v · ~w =| ~v || ~w | cos ✓ (1.18)

Note. Two vectors do not lie in the same line, always in the same plane. By the
convention, the angle ✓ 2 [0, ⇡] ) 0  ✓  ⇡.

1.7.1 Properties of Scalar Product

Theorem 7 (Commutative). Let ~v and ~w be two vectors in E3. Then,

~v · ~w = ~w · ~v (1.19)

Proof. Since the planar angle ✓ is the same for both ~v and ~w,

~v · ~w =| ~v || ~w | cos ✓
=| ~w || ~v | cos ✓
= ~w · ~v

CHAPTER 1. VECTORS 11
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Theorem 8 (Orthogonal Vectors). Let ~v and ~w be two vectors in E3. Then,

~v · ~w = 0 , ~v ? ~w (1.20)

Proof. When ~v ? ~w, the planar angle ✓ = ⇡
2 . Therefore,

~v · ~w =| ~v || ~w | cos ✓

=| ~v || ~w | cos ⇡
2

=| ~v || ~w | ·0
= 0

i.e. ~v and ~w are orthogonal.

Theorem 9 (Distributivity over scalar multiplication). Let ~v, ~w 2 E3 and � 2 R. Then,

�(~v · ~w) = (�~v) · ~w = ~v · (�~w) (1.21)

Theorem 10 (Distributivity over Addition). Let ~u,~v, ~w 2 E3. Then,

~u · (~v + ~w) = ~u · ~v + ~u · ~w (1.22)

Note. Properties of scalar product for standard basis vectors:

î · î = 1

ĵ · ĵ = 1

k̂ · k̂ = 1

î · ĵ = 0

î · k̂ = 0

ĵ · k̂ = 0

1.7.2 Scalar Product in terms of Components

Theorem 11. Let ~v = (v1, v2, v3) and ~w = (w1, w2, w3) be two vectors in E3. Then,

~v · ~w =
3X

i=1

viwi = v1w1 + v2w2 + v3w3 (1.23)
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Proof. Let ~v, ~w 2 E3. Then,

~v · ~w = (v1î+ v2ĵ + v3k̂) · (w1î+ w2ĵ + w3k̂)

= v1 · (w1î+ w2ĵ + w3k̂) + v2 · (w1î+ w2ĵ + w3k̂) + v3 · (w1î+ w2ĵ + w3k̂)

= v1w1î · î+⇠⇠⇠⇠⇠
v1w2î · ĵ +⇠⇠⇠⇠⇠

v1w3î · k̂ +⇠⇠⇠⇠⇠
v2w1ĵ · î+ v2w2ĵ · ĵ +⇠⇠⇠⇠⇠

v2w3ĵ · k̂
+⇠⇠⇠⇠⇠
v3w1k̂ · î+⇠⇠⇠⇠⇠

v3w2k̂ · ĵ + v3w3k̂ · k̂

= v1w1 + v2w2 + v3w3

=
3X

i=1

viwi = v1w1 + v2w2 + v3w3

1.7.3 Using Scalar Product to find the length of a vector

We can also use scalar product to find the length of a vector.

Theorem 12. Let ~v 2 E3. Then,

| ~v |=
p
~v · ~v (1.24)

Proof. Let ~v 2 E3. Then,

| ~v | =
q

v21 + v22 + v23

=
p
v1v1 + v2v2 + v3v3

=
p
~v · ~v

1.7.4 Using Scalar Product to find the angle between two vectors

Theorem 13. Let ~v, ~w 2 E3. Then, the planar angle ✓ between ~v and ~w is given by:

✓ = cos�1

✓
~v · ~w

| ~v || ~w |

◆
(1.25)
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Chapter 1: Vectors

Proof. Let ~v, ~w 2 E3. Then,

~v · ~w =| ~v || ~w | cos ✓

= v1w1 + v2w2 + v3w3

) cos ✓ =
v1w1 + v2w2 + v3w3

| ~v || ~w |

) ✓ = cos�1

✓
~v · ~w

| ~v || ~w |

◆

Note. Some basic properties of scalar product:

1. If ~v · ~w = 0, then ✓ = ⇡
2 .

2. If ~v · ~w > 0, then ✓ 2 [0, ⇡2 ).

3. If ~v · ~w < 0, then ✓ 2 (⇡2 , ⇡].

1.8 Cross Product

Cross Product also known as Vector Product is a function denoted by

⇥ : E3 ⇥ E3 7! E3

i.e. it a binary operator on 2 vectors t̂ returns a vector

Motivation for Vector

Given 2 non-zero vectors ~u and ~v, construct a new vector say ~w such that it is orthoog-

onal to both ~u and ~v

Figure 1.7: Cross Product

14 CHAPTER 1. VECTORS



Chapter 1: Vectors

Definition 14. Given 2 vectors ~u and ~v 2 E3, the cross product of ~u and ~v is the
vector ~w of length

k~wk = k~ukk~vk sin ✓ (1.26)

where ✓ is the planar angle between ~u and ~v and direction given by the right

hand rule

We can determine the direction of ~w by using the right hand rule as shown in Figure
1.8

Figure 1.8: Cross Product Direction

1.8.1 Properties of Scalar Product

These properties can be seen as a consequence of the right and rule.

Theorem 14 (Anti-Commutativity). Let ~v, ~w 2 E3 Then

~v ⇥ ~w = �(~w ⇥ ~v) (1.27)

Figure 1.9: Cross Product Anti-Commutativity
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Theorem 15 (Distributivity). Let ~u,~v, ~w 2 E3 Then

~u⇥ (~v + ~w) = (~u⇥ ~v) + (~u⇥ ~w) (1.28)

Theorem 16 (Multiplication by Scalar). Let ~u,~v 2 E3 and � 2 R Then,

�(~u⇥ ~v) = (�~u)⇥ ~v = ~u⇥ (�~v) (1.29)

Note. Properties of cross product on standard basis vectors

î⇥ ĵ = k̂

ĵ ⇥ k̂ = î

k̂ ⇥ î = ĵ

ĵ ⇥ î = �k̂

k̂ ⇥ ĵ = �î

î⇥ k̂ = �ĵ

Note. The cross product is 0 when 2 vectors are parallel.
If ~v = �~u, then (

0 if � > 0

1 if � < 0

Since sin 0 = sin ⇡ = 0, we get

| ~u⇥ ~v |=| ~u || ~v | sin ✓ = 0

And hence
~u⇥ ~v = 0

And therefore we can derive the following properties about standard basis vectors

î⇥ î = 0

ĵ ⇥ ĵ = 0

k̂ ⇥ k̂ = 0
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1.8.2 Co-Ordinate Version of Cross Product

Theorem 17 (Co-Ordinate formula for Cross Product). Let ~u,~v, ~w 2 E3. Then

~u⇥ ~v = (u2v3 � u3v2)̂i+ (u3v1 � u1v3)ĵ + (u1v2 � u2v1)k̂ (1.30)

Proof. Let ~u,~v 2 E3. Then

~u⇥ ~v = (u1î+ u2ĵ + u3k̂)⇥ (v1î+ v2ĵ + v3k̂)

= (u1î⇥ v1î) + (u1î⇥ v2ĵ) + (u1î⇥ v3k̂) + (u2ĵ ⇥ v1î) + (u2ĵ ⇥ v2ĵ) + (u2ĵ ⇥ v3k̂)

+ (u3k̂ ⇥ v1î) + (u3k̂ ⇥ v2ĵ) + (u3k̂ ⇥ v3k̂)

=⇠⇠⇠⇠⇠
u1v1î⇥ î+ (u1v2î⇥ ĵ) + (u1v3î⇥ k̂) + (u2v1ĵ ⇥ î) +⇠⇠⇠⇠⇠

u2v2ĵ ⇥ ĵ + (u2v3ĵ ⇥ k̂)

+ (u3v1k̂ ⇥ î) + (u3v2k̂ ⇥ ĵ) +⇠⇠⇠⇠⇠⇠
u3v3k̂ ⇥ k̂

= (u2v3 � u3v2)̂i+ (u3v1 � u1v3)ĵ + (u1v2 � u2v1)k̂

Note. We can also write the cross product as

~u⇥ ~v =

������

î ĵ k̂

u1 u2 u3

v1 v2 v3

������
(1.31)

Note. Showing that ~u⇥ ~v is orthogonal to both ~u and ~v

~u · (~u⇥ ~v) = u1(u2v3 � u3v2) + u2(u3v1 � u1v3) + u3(u1v2 � u2v1)

= u1u2v3 � u1u3v2 + u2u3v1 � u2u1v3 + u3u1v2 � u3u2v1

) ~u · (~u⇥ ~v) = 0

and hence orthogonal. Proof similat for the other one.

1.9 Kronecker-Delta

As shown before, the properties of the scalar product, the orthonormal basis vectors
have the following properties

e1 · e2 = 0 = e1 · e3 = e2 · e3

and
e1 · e1 = 1 = e2 · e2 = e3 · e3

We can abbreviate the definition using the Kronecker-Delta

CHAPTER 1. VECTORS 17
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Definition 15 (Kronecker-Delta). Let a, b 2 1, 2, 3. Then we can write:

ea · eb =
(
1 if a = b = 1, 2, 3

0 if a 6= b
= �ab (1.32)

This will also be useful for calculating scalar product

1.9.1 Scalar product using Kronecker-Delta

Theorem 18 (Scalar Product using Kroncker-Delta). Let ~a~b 2 E3. Then

~a · ~v =
3X

i=1

akbk (1.33)

Proof.

a · b =
⇣ 3X

k=1

akek

⌘
·
⇣ 3X

l=1

blel

⌘

=
X

k, l

ak bl ek · el

=
X

k, l

ak bl �kl

Now by the definition of Kronecker-Delta 1.32, it is 0 for all cases except when k = l.
where it has a value of 1 So the summation becomes:

a · b =
3X

k=1

ak bk

1.10 Levi-Civita

We can represent the cross product using Levi-Civita Symbol

Definition 16 (Levi-Civita). Let a, b, c 2 1, 2, 3. Then we write:

"abc =

8
><

>:

0 if a = b = c or more generallya, b, cis not permutation of 1, 2, 3
+1 if a, b, c is an even permuation of 1, 2, 3
�1 if a, b, c is an odd permuation of 1, 2, 3

(1.34)
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Note. Value of "abc depends on the parity of the permutatiom.

1.10.1 Cross product of Orthonoarmal Basis Using Levi-Civita

Definition 17. Then we can write the cross product Orthonoarmal Basis Vectors

e1, e2, e3 in the following way

ea ⇥ eb =
3X

i=1

akbk"abc (1.35)

1.10.2 Cross Product of Vectors in Levi-Civita Notation

Theorem 19 (Cross Product using Levi-Civita Notation). Let ~a,~b 2 E3. Then

~a⇥~b =
3X

m=1

(~a⇥~b)mem (1.36)

where (~a⇥~b)m is the mth component

(~a⇥~b)m =
X

k, l

"abcakbl (1.37)

Proof. Let

a = akek =
3X

k=1

ak ek b = blel =
3X

l=1

bl el

Observe the use of Eintein’s Notation (see below) and observe that

a⇥ b =
⇣ 3X

k=1

akek

⌘
⇥
⇣ 3X

l=1

blel

⌘

=
X

k, l

ak bk ek ⇥ el

And therefore by 1.35, we can rewrite it in the following way

=
X

k, l, m

ak bl "klm em

Define the mth component as

(~a⇥~b)m =
X

k, l

"abcakbl

and hence we get 1.36
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1.11 Einstein’s Notation

Definition 18 (Einstein’s Notation). If two indicies are repeated, then they are
summed and we can suppress the summation

1.11.1 Scalar Product using Einstein Convention

Example.
3X

i=1

akbk = akbk

Here the repeated index is k

1.11.2 Cross Product using Einstein Convention

Example. Here the repeated index is k and l

(a ⇥ b)m =
3X

k, l

"klmak bk = "klmak bk

1.12 Triple Scalar Product

Theorem 20 (Triple Scalar Product). Let ~a,~b,~c 2 E3. Then

~a · (~b⇥ ~c) = "abcapbqcr (1.38)

Note. We have used Einstein’s Notation for Scalar and Vector Product as well as
Levi-Civita Notation 1.34

Proof.

a · (b⇥ c) = ap (b⇥ c)p

= ap "pqr bq cr

= "pqr ap bq cr

Note. Although not mathematically valid, we can use the determinant method

a · (b⇥ c) = det

0

@
a1 a2 a3

b1 b2 b3

c1 c2 c3

1

A
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1.13 Useful Properties of Kronecker-Delta and Levi-
Civita

Theorem 21.
"pqr"ruv = (�pu�qv � �pv�qu) (1.39)

Note. These are useful identity/trick to remember (remeber the use of Einstein’s

Notation)
�aa = �11 + �22 + �33 = 3

�ab�bc = �a1�1c + �a2�2c + �a3�3c =

(
1 if a = c

0 if a 6= c
= �ac

1.14 Triple Vector Product

Theorem 22 (Triple Vector Product). Let a, b, c 2 E3

a⇥ (b⇥ c) = b(a · c)� c(a · b) (1.40)

Proof. Taking three vectors a, b and c, we calculate the pth component first:

[a⇥ (b⇥ c)]p = "pqr aq(b⇥ c)r

= "pqr aq "ruv bu cv

using identity 1.39, we get

[a⇥ (b⇥ c)]p = (�pu�qv � �pv�qu)aqbucv

Use the explanation below for completion
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Figure 1.10: Triple Vector Product Proof
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1.15 Vector Equation of Lines

Definition 19 (Vector Equation of Lines). The position vector of x of an arbitrary
point P(x,y,z) on the line in terms of p and v

x = p+ tv for t 2 R (1.41)

Figure 1.11: Vector Line

1.15.1 Parametric Equation of a Line

Note. Every point x can be written as

x = xî+ yĵ + zk̂

Therefore we can form a parametric equation of a line

Definition 20 (Parametric Equation of a Line).
8
><

>:

x = x0 + tv1

y = y0 + tv2

z = z0 + tv3

for t 2 R (1.42)

1.15.2 Vector Equation of Line going through 2 points

Definition 21. Let P and Q be two points on the line and let their position vectors
be p and q repectively. Then the direction vector is:

~PQ = q � p

and the vector equation line is

x = +t(q � p) for t 2 R (1.43)

The following diagram depicts this:
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Figure 1.12: Vector Line

1.16 Vector Equation of Planes

Definition 22 (Vector Equation of Planes). Given a point P with position vector p

and 2 vectors not lying on the same line i.e. not collinear, then there is a plane
that passes through P parallel to both u and v

The position vector of an arbitrary point x is

x = p+ su+ tv for s, t 2 R (1.44)

This is known as the plane spanned by u and v going through P

1.16.1 Parametric Equation of a line

Definition 23. 8
><

>:

x = x0 + su1 + tv1

y = y0 + su2 + tv2

z = z0 + su3 + tv3

for s, t 2 R (1.45)

1.16.2 Vector Equation of Planes using 3 Points

Definition 24. Given 3 non-linear points P,Q and R with position vectors p, q and
r respectively. Note that the vectors

(p� r) and (q � r)

are two direction vectors parallel to the plane. Then taking r as the starting
point, the equation of the plane becomes

x = r + s(p� r) + t(q � r) for s, t 2 R (1.46)

1.16.3 Normal Vector to a Plane

Another way to define a plane is by noticing that (in 3d) there is exactly one line which
is perpendicular to the plane. A vector parallel to this line is called a normal vector.
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Note (Unit Normal). If the normal vector has unit length, then it called a unit
normal
Thus if n̂ is a unit normal to a plane then there is exactly one other unit normal
to the plane namely �n̂

Definition 25 (Equation of Plane using Normal Vector). If p is a position vector of
a known point in the plane and x is any arbitary point on the plane, then

(x� p)

is parallel to the plane and thus orthogonal to the normal. Therefore equation of a
plane can be given as

(x� p) · n = 0 (scalar product) (1.47)

or multipying out the Scalar Product

x · n = p · n

1.17 Change of Axes

1.17.1 Change of Origin

Consider the following diagrams:

a
0

O

O
0

s

A

a

Here we have 2 vectors

•
�!
OO

•
��!
O

0
O

Shift of Origin

The shift of origin is represented by s is relative to O, then

u = a = s+ a
0 ) a

0
= a� s

Note. s could depend on time
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Note. Consider the following diagram

a
0

O

O
0

s

A B

a

b

b
0

Let a and b represent vectors to A and B relative to O. Similarly let a
0 and b

0

represent vectors relative to O
0 . Then:

a
0 � b

0
= (a� s) � (b� s) = a� b

As we can see the displacement from a to b is the same as the displacement from
a

0 to b
0
.

1.17.2 Shifting and Changing Unit Vectors

ea

eb

ec

ea
0

eb
0

ec
0

Consider 2 sets of orthogonal unit vectors ea and e
0
a where a 2 {1, 2, 3}.

We can say that each of the ea
0 is a linear combination of each if the ea. So we can say

that for a matrix Rab

e
0

a = Rab eb (⇤)

Since the index b is repeated twice, we use the Einstein Convention. This is equiva-
lent to:

e
0

a = Ra1 e1 + Ra2 e2 + Ra3 e3

We need to work out that Rab is.
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First we require from the definition of Kronecker Delta 1.32:

�ac = e
0

a · e
0

c

= Rab eb · Rcd ed from equation (⇤)

= RabRcd eb · ed

= RabRcd �bd

Therefore we get:
�ac = RabRcd �bd

By again using the Einstein’s Notation the index b and d is repeated twice. Now in
the RHS , �bd is 1 only when d = b. Hence:

�ac = RabRcd �bd

) �ac = RabRcb

In the expression �ac = RabRcb it is not quite matrix multiplication since the columns

of the first b is not equal to the row of the second c . Therefore we transpose the

matrix and we get the following:

�ac = RabRcb = Rab(R
T )bc = (RR

T )ac

) �ac = (RR
T )ac

Since �ac is the Kronecker Delta 1.32/identity matrix, we can say that:

RR
T = =

0

@
1 0 0
0 1 0
0 0 1

1

A

and hence R is an orthogonal matrix. Also note that

det(1) = 1 =det(RR
T )

= det(R) det(RT ) property of det function

=(det(R))2 since det(R) = det(RT )

Hence we get the expression:
1 = (det(R))2

) det(R) = 1
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Because R is continuously connected to the identity matrix we chose +1. Therefore
any matrix R with the property:

det(R) = 1

is a valid matrix.
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2. Newtownian Dynamics
In this section, we deal with particles Particles are an idealization since real objects even
if very small have very small a spatial extent.

Particles will be represented by a point in space that movies in a trajectory denoted
by r(t) which is a vector denoting its position at a time t relative to a specified origin.

2.1 Basic Kinematics

2.1.1 Position of a particle

Definition 26. A point particle’s positon at time t on a trajectory relative to an
origin O can be described by a position vector relative to an origin O

The position vector is r and can be represented using basis vectors.

r(t) = xi+ yj + zk (2.1)

O

P

r(t)

Note (Using Einstein Notation to describe position). Using Einstein’s Notation we
can also represented it in the following way:

r(t) = �aea

2.1.2 Kinematics: Velocity and Acceleration

In position vector of a particle (2.1) r assuming that the Orthonormal bais unit vectors

i, j and k are constant, we can write velocity and acceleration in the following way:
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Velocity

Consider the following diagram:

O

P

r(t)
r(t + �t)

�r

From the diagram above:
�r = r(t+ �t)� r(t)

Dividing by �t and taking the limit as � ! 0 we get

ṙ(t) = v(t) = lim
�t!0

✓
r(t+ �t)� r(t)

�t

◆

Definition 27 (Velocity of a Particle).

ṙ =
dr(t)

dt
= �ėa = ẋi+ ẏj + żk (2.2)

acceleration

Similarly acceleration can be definined in the following way:

Definition 28 (Velocity of a Particle).

r̈ =
dṙ(t)

dt
= �ëa = ẍi+ ÿj + z̈k (2.3)

In terms of limits

r̈(t) = v̇(t) = a(t) = lim
�t!0

✓
v(t+ �t)� v(t)

�t

◆
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2.1.3 Examples of Trajectories

Straight Line Trajectory

Consider the following diagram

O

P

r0
r(t)

v(t)

Using Vector equation of Lines (1.41), we get the following equation for r(t)

r(t) = r0 + tv v, r0 are constants

Then we can find the Velocity (2.2) and Acceleration as (2.3) as

v(t) =
dr(t)

dt
= ṙ(t) = v

a(t) =
dṙ(t)

dt
= ¨r(t) = 0

Parabolic Trajectory

Definition 29 (Parabolic Trajectory). A parabolic trajectory is defined as

r = r0 + v0t+ a0
1

2
t
2 (2.4)

where v0 and r0 are constants

Acceleration (2.3) and Velocity (2.2) are

• v(t) =
dr(t)

dt
= ṙ(t) = v0 + a0t

• a(t) = v̇(t) =
d

dt
(v0 + a0t) = a0

Example of a Parabolic Trajectory: Consider the following equation:

r(t) = (u0i+ v0k| {z }
v0

)� 1

2
gt

2
k
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r(t)

k

z

i

x

Here, separating the components if i and k, we get the following (scalars):

x(t) = u0t ) t =
x(t)

u0

and substituting for in the value for z(t) (component of k),

z = v0t�
1

2
gt

2

=
v0 x

u0
� 1

2
g

⇣
x

u0

⌘2

=
v0 x

u0

⇣
1� 1

2

gx

u0 v0

⌘

And therefore as we can see, the equation for z(t) is in the form of a parabola.

Circular Trajectory

Definition 30 (Circular Trajectory). Consider a particle trajectory by the described
by the following equations

r(t) = a(cos(!t)i+ sin(!t)j) (2.5)

• x(t) = a cos(!t) i.e. the x-component

• y(t) = a sin(!t) i.e. the y-component

Note.
x
2 + y

2 = a
2 cos2(!t) + a

2 cos2(!t) ) x
2 + y

2 = a
2

which is the equation of a circle of radius a.

Velocity in a circular trajectory

First calculating the Velocity (2.2),

ṙ(t) = a(�! sin(!t)i+ ! cos(!t)j)

where:

• ẋ(t) = �a ! sin(!t) i.e. the velocity in x-direction
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• ẏ(t) = a ! cos(!t) i.e. the velocity in y-direction

The magnitude of velocity is:

| ṙ |2 = x
2 + y

2

= a
2
!
2 sin2(!t) + a

2
!
2 cos2(!t)

= a
2
!
2

)| ṙ |=| v |= a!

We can see that velocity has a constant magnitude, but is clearly changing in direc-

tion. The particle is moving in the anti-clockwise direction. (This can be verified by
checking any random point).

Acceleration in a circular trajectory Calculating the Acceleration (2.3),

r̈(t) = �a!
2(cos(!t)i+ sin(!t)j)

= �!
2
r

So as we can see from the equation r̈(t) = �!
2
r, we can see that the acceleration points

downwards, i.e. opposite to the direction of r i.e. position vector.

r(t)

j

y

i

x

v
v a

Figure 2.1: Circular Trajectory
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2.2 Motion in Polar Co-ordinates

2.2.1 The polar co-ordinate system

For any vector x on the xy � plane, we can introduce 2 unit vectors

er , e✓

• er is the unit vector in the radial direction

• e✓ is the unit vector in the azimuthal direction

r

cos ✓

cos ✓

✓

e✓
er

sin✓

sin✓

x

y

Definition 31 (Relation between Cartesian and Polar Co-ordinates).

x = r cos ✓ y = r sin ✓

Where | r |= r

Note. Just like basis vectors î and ĵ in Cartesian co-ordinates, er and e✓ are orthog-
onal to each other.
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2.2.2 Polar Basis Vectors

Definition 32 (Polar Orthonormal Basis). Unit Vectors

er and e✓

form the orthonormal basis for the The Polar Co-Ordinate System.

Furthermore, the unit vectors er and e✓ can be represented using cartesian basis vectors

i and j

x

y

r

sin ✓

i

j er

e✓

sin ✓

cos ✓

As we can see from the diagram:

er = i cos ✓ + j sin ✓

and
e✓ = ± sin ✓ i+⌥ cos ✓ j

because er is orthogonal to e✓. Use the case from the diagram:

e✓ = i sin ✓ � j cos ✓

Definition 33 (Polar Basis Using Cartesian).

er = i cos ✓ + j sin ✓

e✓ = i sin ✓ � j cos ✓

Properties of Polar Orthonormal Basis

Theorem 23. Since er and e✓ are orthogonal,

er · e✓ = 0

(scalar product is 0)
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Theorem 24. The cross product (1.30)

er ⇥ e✓ = 0

Proof.
er ⇥ e✓ = (i cos ✓ + j sin ✓)⇥ (i sin ✓ � j cos ✓)

= (cos2 ✓ + sin2
✓)i⇥ j

= k

2.2.3 Derivatives of Polar Orthonormal Basis Vectors

We assume that the angle changes with time, i.e.

✓ = ✓ (t)

and therefore the polar basis vectors are NOT CONSTANT.

First Derivative

First we will compute the first derivatives ėr and ė✓.

1. Computing ėr

ėr =
d

dt

⇣
i cos ✓ + j sin ✓

⌘

= �✓̇ sin(✓)i+ ✓̇ cos(✓)j

= ✓̇(� sin(✓)i+ cos(✓)j)

= ✓̇ e✓

Definition 34 (First derivative of er).

ėr = ✓̇ e✓

= �✓̇ sin(✓)i+ ✓̇ cos(✓)j
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2. Computing ė✓

ėr =
d

dt

⇣
� sin(✓)i+ cos(✓)j

⌘

= �✓̇ cos(✓)i� ✓̇ sin(✓)j

= �✓̇(cos(✓)i+ sin(✓)j)

= ✓̇ er

Definition 35 (First derivative of er).

ė✓ = �✓̇ er

= �✓̇ cos(✓)i� ✓̇ sin(✓)j

2.2.4 Position Vector in Polar Co-ordinates

Definition 36. In polar co-ordinates, the position vector i.e. the position of a
particle is simply

r = r er

r

er

e✓ ✓

2.2.5 Polar Velocity and Acceleration

Velocity

Computing velocity in polar co-ordinates:

ṙ =
d

dt

⇣
r er

⌘

= ṙ er + r ✓̇ e✓ product rule
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Definition 37 (Velocity in Polar co-ordinates).

ṙ = ṙ er + r ✓̇ e✓ (2.6)

Acceleration

Computing Acceleration in polar co-ordinates:

r̈ =
d

dt

⇣
ṙ(t)

⌘

=
d

dt

⇣
ṙer + r✓̇e✓

⌘

= r̈er + ṙėr + ṙ✓̇e✓ + r✓̈e✓ + r✓̇ė✓

= r̈er + ṙ✓̇e✓ + ṙ✓̇e✓ + r✓̈e✓ � r✓̇
2
er

= (r̈ � r✓̇
2)er + (r✓̈ + 2ṙ✓̇)e✓

Definition 38 (Acceleration in Polar co-ordinates).

r̈ = (r̈ � r✓̇
2)er + (r✓̈ + 2ṙ✓̇)e✓ (2.7)

2.2.6 Cross Product Between Position and Velocity in Polar

We want to compute the cross product 1.31

r ⇥ ṙ

We can compute it as follows

r ⇥ ṙ = r ⇥ (ṙer + r✓̇e✓)

= (r ⇥ ṙer) + (r ⇥ r✓̇e✓)

= (rer ⇥ ṙer) + (rer ⇥ r✓̇e✓)

= rṙ(er ⇥ er) + r
2
✓̇(er + e✓)

= r
2
✓̇k
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Note. We have used the properties of cross product on cartesian and polar basis
vectors

Definition 39 (Cross Product b/w Position and Velocity in Polar).

r ⇥ ṙ = r
2
✓̇k (2.8)

Note. ṙ 6=| ṙ | or rather

ṙ = ṙ · er =
r · ṙ
r

while, | r |=
p

ṙ2 + r2✓̇2

2.3 Inertial Frames

The Laws of Physics are the SAME in ALL inertial frames. Inertial frames are frames
of reference which are not accelerating and where Newton’s law of inertia holds.

2.3.1 Convertting between Inertial frames

Consider the following diagram:

O

O
0

r(t) r
0(t)

s(t)

Here

• The vector r(t) is the position vector of a particle in the inertial frame O/relative
to 0.

• The vector r
0(t) is the position vector of the same particle in the inertial frame

O
0/relative to O

0.

• The vector s(t) represents the shift between the two frames.

r(t) = r
0
(t) + s(t) ) ṙ(t) = ṙ

0
(t) + ṡ(t)

) r̈(t) = r̈
0
(t) + s̈(t)
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Since we are working with inertial frames, they both must have constant relative

velocity

s
0
= constant = s

00
(t) = 0

i.e. the shift acceleration/relative acceleration is zero.

Definition 40 (Inertial Frames). An inertial frame is a frame of reference which is
not accelerating and where Newton’s law of inertia holds.
If we an inertial frame, the relative/shift acceleration is 0

s
00
(t) = 0 (⇤)

and therefore
r̈(t) = r̈

0
(t)

2.3.2 Gallilean Transformation

We have seen from (⇤) that to have an inertial frame we had

s̈ (t)

And then we can solve this differential equation with respect to t to get

s̈ (t) = a+ ut

where u is a constant velocity and a is a shift in origin. This is also known as
Gallilean transformation.

Definition 41 (Gallilean Transformation). A Gallilean Transformation is when the the
shift vector s(t) is the following:

s(t) = a+ ut (2.9)

2.4 Newton’s Laws of Motion

2.4.1 Inertia

Definition 42 (Law of Inertia). Any body which isn’t being acted on by an outside

force stays at rest if it is initially at rest, or continues to move at a constant velocity
if that’s what it was doing to begin with. i.e.

Every object will remain at rest or in uniform motion in a straight line unless
compelled to change its state by the action of an external force.

2.4.2 Newton’s First Law of Motion

Definition 43 (Newton’s First Law). Every body continues in a state of rest or
uniform motion in a right line unless t is compelled to change that state by forces

impressed on it.
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2.4.3 Newton’s Second Law of Motion

Definition 44 (Newton’s Second Law). The change of motion is proportional to the
motive force impressed on it and is *made* in the direction of the right line in
which that force was impressed.

Newton’s second law postulates a relation between acceleration (2.3) of the body and the
forces acting on it. Therefore we can reformulate Newon’s second law as follows:

Definition 45 (Newton’s Second Law). The net force F on a body of constant mass

causes a body to accelerate. The acceleration r̈ is in the direction of F proportional

to the magnitude of the force and inversely proportional to the mass of the body:

ẍ =
F

m

or equivalently
F = mẍ (2.10)

2.4.4 Newton’s Third Law of Motion

Definition 46 (Newton’s Third Law). To every action there is always an equal and

opposite reaction: or the mutual actions of two bodies upon each other are always
equal and directed to contrary parts.

2.5 Equation of Motion

Note. Acceleration is proportional to the net force acting on the body. Therefore,
we can write

a / F

In an inertial frame, a particle moves in such a way that its acceleration (2.3)
is proportional to the sum of all forces acting on it Newton’s Second Law of

Motion

Definition 47 (Equation of Motion). The equation of motion of a particle is the
differential equation that describes the trajectory of the particle in space. In an
inertial frame, the equation of motion is given by

r̈(t) =
F

m
(2.11)

where F is the net force acting on the particle and m is the mass of the particle.
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2.5.1 Momentum

Definition 48 (Momentum). The momentum of a particle is the product of its
mass and velocity:

p = mv (2.12)

Note. From (2.12), we can see that the momentum is a vector quantity.

We can generalize the definition of Force usng momentum as follows:

Definition 49 (Newton’s Second Law in terms of Momentum). Newton’s second law
(2.10) can be written in terms of momentum as follows:

F =
dp

dt
(2.13)

2.6 Sample Forces

2.6.1 Gravitational Force

Definition 50 (Gravitational Force). The gravitational force between 2 particles of
mass m1 and m2, situated at r1 and r2 (i.e. the force felt by particle 1 because of the
prescence of particle 2) is given by

F12 =
Gm1m2

| r1 � r2 |2
r1 � r2

| r1 � r2 |

F21 =
Gm2m1

| r2 � r1 |2
r1 � r2

| r1 � r2 |
where the two forces are equal and opposite in direction:

F12 = �F21

Note. The vectors:
r1 � r2

| r1 � r2 |
and

r2 � r1

| r2 � r1 |
are unit vectors. That is they give the direction of the gravitational force, and it is
in the direction directed towards each other.

Gravitational Constant

Definition 51 (Gravitational Constant). The gravitational constant G is a con-

stant that is used to quantify the attractive force between two objects with mass.
It is approximately equal to

G = 6.674⇥ 10�11 m3 kg�1 s�2
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Gravitational Force Near the Earth’s Surface

Definition 52 (Gravitational Force Near the Earth’s Surface). The gravitational force

near the Earth’s surface is given by

F = mg = �mgk

where m is the mass of the object and g is the gravitational acceleration near the
Earth’s surface. The gravitational acceleration near the Earth’s surface is given
by

g =
Gmearth

R2
earth

⇡ 9.8m/s
2

Note. Hence near the Earth, Newton’s Equation of Motion (2.11) becomes:

mr̈ = �mgk ) r̈ = �mgk

i.e gravitational acceleration is independent of the mass.

This differential equation can be solved to give:

r (t) = r0 + tv0 �
1

2
t
2
gk

2.6.2 Lorrentz Force

Definition 53 (Lorrentz Force). Force on a charged particle in an electromagnetic
field (E,B):

F = q

✓
E + ṙ ⇥ B

c

◆

where q is the charge of the particle, E is the electric field, B is the magnetic field,
and c is the speed of light.

Note. Note mass is additive, charge is not.

Notation. Let M =
Pi=1

N be the total mass of the system, and mi be the mass of the
ith particle.

2.7 Energy

2.7.1 Kinetic Energy

Consider Newton’s Equation of Motion (2.11):

mr̈ = F
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We multiply both sides by ṙ to get:

mr̈ = F ) mṙ · r̈ = ṙ · F

) m
d

dt

⇣1
2
ṙ · ṙ

⌘
= F · r (chain rule)

) 1

2
m

⇣
m
1

2
| r2 |

| {z }
Kinetic Energy K

⌘
= F · r

Definition 54 (Kinetic Energy). The kinetic energy K of a particle is given by:

K =
1

2
m | ṙ |2= 1

2
m | v |2 (2.14)

2.7.2 Work Done

Consider the rate of change of kinetic energy (2.14):

dK

dt
=

d

dt

⇣1
2
m | ṙ |2

⌘
) dK

dt
=

1

2
m

d

dt

⇣
| ṙ |2

⌘

) dK

dt
= mṙ · r̈

Integrating both sides with respect to time t1 to t2 gives:

Z t2

t1

mr · r̈dt =
Z t2

t1

dK

dt
dt = K(t2)�K(t1)

=

Z t2

t1

F · ṙ

=

Z P2

P1

F · dr

Note. P1 and P2 are the positions of the particle at times t1 and t2 respectively on a
trajectory.

The last integral is called a line integral and is integrated along the trajectry/curve.
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Definition 55 (Work Done). The work done W by a force F on a particle moving
along a trajectory from P1 to P2 is given by:

W =

Z P2

P1

F · dr = K(t2)�K(t1) (2.15)

i.e. it is the change in kinetic energy.

2.7.3 Potential Energy

Definition 56 (Conservative Forces). A force F is conservative if it can be written
as the gradient of a scalar function �:

F = �r�

where r is the gradient operator:

r =
⇣
@

@x
,
@

@y
,
@

@z

⌘

Hence the work done by a conservative force F is given by:

F = �r� = �
⇣
@

@x
i+

@

@y
j +

@

@z
k

⌘
� = �

⇣
@�

@x
i+

@�

@y
j +

@�

@z
k

⌘

Potential Energy and Conservation

Consider the following calculations:

F = �r� ) F · r = �r ·r�

Now by the definition of Kinetic Energy (2.14)

F · r = dK/dt = K̇, we get the following:

dK

dt
= �ṙ ·r� ) dK

dt
= �ṙ ·r�(r)

) dK

dt
= �d�

dt
chain rule

) d

dt

⇣
K + �

⌘
= 0

And therefore Energy is a conserved quantity.
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Definition 57 (Conservation of Energy). Energy is a constant of motion

Ė =
d

dt

⇣
K + �

⌘
= 0

Therefore
E = K + � = CONSTANT

Definition 58 (Potential Energy). The potential energy � is given by:

� = �
Z P2

P1

F · dr (2.16)

2.8 Example Conservative Forces

2.8.1 Gravitational Force Near the Earth’s Surface

As shown in the previous section, the gravitational force near the Earth’s surface is given
by

F = mg = �mgk

where m is the mass of the object and g is the gravitational acceleration near the
Earth’s surface.
And therefore we can derive the following:

�mgk =
⇣
i
@

@x
+ j

@

@y
+ k

@

@z

⌘
(�mgz)

= �r(mgz)

Therefore we can define the following:

Definition 59 (Gravitational Potential Energy Near the Earth’s Surface). The gravita-

tional potential energy � is given by:

� = mgz (2.17)

Example (Calculating Velocity). A particle is dropped from rest at a height z = h.
Calculate the velocity

Solution:

We know that the particle is dropped from rest, therefore v = 0 at t = 0 at height
z = h Therefore.

E = K + � =
1

2
m | 0 |2 +mgh = mgh
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At height z = 0, height is 0 so

E = K + � =
1

2
m | ṙ |2 +mg0 =

1

2
m | ṙ |2

Since Energy is a constant, we get that:

mgh =
1

2
m | ṙ |2 ) 2gh =| ṙ |2

)| ṙ |=
p
2gh

2.8.2 Gravitational Potential Energy Away from the Earth’s Sur-

face

Consider the following diagram:
m

r

M

The gravitational potential energy is given by:

F = mr̈ = �mMG

| r |2
r

| r |

= �r
⇣
� mMG

| r |

⌘

Definition 60 (Gravitational Potential Away From Earths Surface). The gravitational

potential � is given by:
� = �mMG

| r | (2.18)

2.9 Angular Momentum

Definition 61 (Angular Momentum). The angular momentum J of a particle is
given by:

J = r ⇥ p = mr ⇥ ṙ (2.19)

where r is the position vector of the particle, and p is the momentum (2.12) of the
particle.
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2.9.1 Moment of a Force

From the following calculation:

J̇ =
d

dt

⇣
mr ⇥ ṙ

⌘

= mṙ ⇥ ṙ +mr ⇥ r̈ product rule

= 0 +mr ⇥ r̈ properties of cross product

= mr ⇥ r̈

= r ⇥ F Newton’s Equation of Motion (2.11)

⌘ M

Definition 62 (Moment of a Force). The moment of a force M of a particle is
defined to the rate of change of angular momentum (2.19) is given by:

M = r ⇥ F (2.20)

where r is the position vector of the particle, and F is the force on the particle.

Note. M is also called the torque of the force F .

2.9.2 Conservation of Angular Momentum

Consider a particle moving under the influence of a force F directed towards or away from
the origin.

F = f(r)r

where f(r) is a scalar. Hence calculating the moment of the force F :

J̇ = r ⇥ F = f(r)r ⇥ r

= 0

) J̇ = 0

Hence angular momentum is a conserved quantity.
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Definition 63 (Conservation of Angular Momentum). If a force F is proportional to
r, i.e.

F = f(r)

then angular momentum is conserved:

J̇ = 0

2.10 Collection of particles

2.10.1 Total Force in a collection of particles

In a discrete system of N particles, of mass mi and positions ri(t), relative to a chosen
origin O.
The particle i experiences two types of forces:

1. External forces Fi
ext maybe due to external fields (e.g. gravitational, electric,

magnetic, etc.) where i 2 {1 . . . N}

2. Inter-Particle forces Fij due to the presence of other particles.

Therefore from Newton’s second law, the equation of motion for particle (2.10) i is:

Definition 64 (Force on Particle i). For particles i where i 2 {1 . . . N}, the force on
particle i is given by:

mir̈i = Fi
ext +

NX

j=1

Fij (2.21)

where Fij is the force on particle i due to particle j.

Note. Particle i does not feel a force from itself, i.e. Fii = 0.

Due to Newton’s third law, the force on particle j due to particle i is equal and

opposite to the force on particle i due to particle j, i.e.

Fij = �Fji

.

Hence summing on index i in (2.21) gives:

NX

i=1

mr̈i =
NX

i,j=1

Fij

| {z }
0 because Fij=�Fji

+
NX

i=1

Fi
ext

= 0 +
NX

i=1

Fi
ext
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Definition 65 (Total Force). The total force on the system is given by:

F
ext =

NX

i=1

Fi
ext (2.22)

i.e. the sum of all external forces on the system.

2.10.2 Center of Mass

Definition 66 (Center of Mass). In a discrete system of N particles with masses mi

and position vectors ri, relative to a fixed origin O, the center of mass is defined
as

R =

NP
i=1

miri

NP
i=1

mi

(2.23)

Note. The denominator of (2.23) is the total mass of the system which will be
denoted by

M =
NX

i=1

mi (2.24)

and hence

R =

NP
i=1

miri

M
(2.25)

Definition 67 (Total External Force using Center of Mass). The total external force

acting on the system is defined as

MR̈ = F
(e)
total (2.26)

Note. If total external force is zero, i.e. F
(e)
total = 0, then R̈ = 0 and therefore Ṙ

is contant. Hence the center of mass moves with constant velocity.

2.10.3 Total Kinetic Energy in a Collection of Particles

Definition 68 (Total Kinetic Energy). In a discrete system of N particles with mass

mi and position vector ri (t), the total kinetic energy of a collection of particles is
defined as

Ktot =
NX

i=1

1

2
mi | ṙi |2 (2.27)
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Consider the following diagram (R is the center of mass 2.23):

O

R
ri

si

center of mass

mi

R

Set si = ri �R, then

Ktot =
1

2

NX

i=1

mi | ṙi |2 ) Ktot =
1

2

NX

i=1

mi | Ṙ + ṡi |2

) Ktot =
1

2

NX

i=1

h
mi | Ṙ |2 +mi2Ṙ · si +mi | ṡi |

i
(1)

Note. From the definition of the center of mass (2.23), we have

MR =
NX

i=1

miri =
NX

i=1

mi(R + si)

= MR +
NX

i=1

misi

and therefore, we get
NX

i=1

misi = 0

and therefore, (1) becomes

Ktot =
1

2
M | Ṙ |2 +1

2
mi | ṡi |2

where M =
NP
i=1

Definition 69 (Total Kinetic Energy v2). In a discrete system of N particles with mass

mi and position vector ri (t), the total kinetic energy of a collection of particles is
defined as

Ktot =
1

2
M | Ṙ |2 +1

2

NX

i=1

mi | ṡi |2 (2.28)
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2.10.4 Total Angular Momentum

Consider the following calculations:

J tot =
NX

i=1

miri ⇥ ṙi

=
NX

i=1

mi(R + si)⇥ (Ṙ + ṡi) since ri = si +R

= MR⇥ Ṙ +
1

2

NX

i=1

misi ⇥ ṡi

Definition 70 (Total Angular Momentum). In a discrete system of N particles with
masses mi and position vectors ri, relative to a fixed origin O, the total angular

momentum of a collection of particles is defined as

J tot = MR⇥ Ṙ +
1

2

NX

i=1

misi ⇥ ṡi (2.29)

2.10.5 N-body Gravitational System

For N -body Gravitational System with no external forces, moving under mutual grav-

itational forces, we calculate the rate of change of Kinetic Energy (2.14) of the
system.

K̇tot =
d

dt

NX

i=1

1

2
mi | ṙi |2

=
NX

i=1

miṙi · r̈i

Note. For a gravitational system

mir̈i =
Gmimj

| ri � rj |2
ri � rj

| ri � rj |

We can write the rate of change of Kinetic Energy (2.14) of the system as
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K̇tot =
NX

i=1

ṙi ·
NX

j=1

Gmimj

| ri � rj |2
ri � rj

| ri � rj |

=
X

i=1
i 6=j

Gmimj

| ri � rj |3
ri · (ri � rj)

=
1

2

X

i=1
i 6=j

Gmimj

| ri � rj |3
(ri � rj) · (ri � rj) (⇤)

Remark.
d

dt
| p |2= 2 | p |

d | p |
dt

and
d

dt
| p |2= d

dt
(p · p) = 2p · ṗ

And therefore we get

2 | p |
d | p |
dt

= 2p · ṗ

)
d | p |
dt

= p · ṗ

Note.

d

dt

1

| ri � rj |
= � 1

| ri � rj |2
d

dt
| ri � rj |

= � 1

| ri � rj |3
(ri � rj) · (ri � rj)

Therefore equation (⇤) becomes

K̇tot =
1

2

NX

i=1
i 6=j

d

dt

Gmimj

| ri � rj |

=
NX

i<j

d

dt

Gmimj

| ri � rj |
(⇤⇤)

Since i < j is already half the number of terms in the sum.
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And using the summation properties for derivatives (⇤⇤) becomes

K̇tot =
NX

i<j

d

dt

Gmimj

| ri � rj |

=
d

dt

NX

i<j

Gmimj

| ri � rj |

Therefore we get

K̇tot �
d

dt

NX

i<j

Gmimj

| ri � rj |
= 0 ) dKtot

dt
� d

dt

NX

i<j

Gmimj

| ri � rj |
= 0

) d

dt

 
Ktot �

NX

i<j

Gmimj

| ri � rj |

!
= 0

That is a Total Energy is conserved

Definition 71 (Total Energy in N-body system). The total energy E in an N-body
gravity system is

E = Ktot �
NX

i<j

Gmimj

| ri � rj |
(2.30)

or using (2.28), we get

E =
1

2
M | Ṙ |2 +1

2

NX

i=1

mi | ṡi |2 �
NX

i<j

Gmimj

| ri � rj |
(2.31)

Definition 72 (Potential Energy in N-body gravitational system). The term

NX

i<j

Gmimj

| ri � rj |
(2.32)

is the total gravitational potential energy expressed as a sum over all pairs of
particles.
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2.10.6 A Virial Theorem

Define the following:

D =
1

2

NX

i�1

mi | ri2 |

Then we get the following for the derivatives

Ḋ =
NX

i=1

miri · ṙi chain rule

and the second derivative is (from the product rule)

D̈ =
nX

i=1

miṙi · ṙi +
nX

i=1

miṙi · r̈i (⇤)

Then therefore we can rewrite the equation (⇤) using definition of (2.14)

D̈ = 2Ktot +
nX

i=1

miṙi · r̈i

Virial Theorem on Gravity

Gravitational Force of Attraction is defined as

mr̈i =
Gmimj

| ri � rj |2
rj � ri

| ri � ri |

And therefore substituting this into the second derivative D̈ we get the following:

D̈ = 2Ktot +
NX

i=1

ri ·
X

i 6=j

Gmimj

| ri � rj |
rj � ri

| ri � rj |

= 2Ktot +
1

2

X

i 6=j

(ri � rj) ·
Gmimj

| ri � rj |3
(ri � rj)

= 2Ktot + �

= Ktot +Ktot + �

) D̈ = Ktot + E|{z}
conserved
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Define average Kinetic Energy

Definition 73 (Average Kinetic Energy).

< Ktot >=
1

⌧

Z ⌧

0

Ktotdt (2.33)

Suppose the quantity R does not change, we find that

E = � < Ktot > or 2 < Ktot >= � < Vtot >

This fact was the basis of an analysis of the Coma cluster of galaxies by Zwicky (‘On
the Masses of Nebulae and of Clusters of Nebulae’, F Zwicky, Astrophysical Journal, vol.
86 (1937) 217), which demonstrated that there should be some kind of ‘dark matter’ to
account for observation. So far, ‘dark matter’ has not been identified directly though there
are other, independent, indications that it should exist and many theories as to what it
might be. (For example, see ‘Particle dark matter: evidence, candidates and constraints’,
G Bertone, D Hooper, J Silk, Physics Reports 405 (2005) 279).

2.11 Two-Body Gravitational System

Consider the following diagram

O

r1
r2

We have 2 equations of motion (2.10)

mr̈1 = Gm1m2

r2 � r1

| r2 � r1 |
(G1)

mr̈1 = Gm1m2

r2 � r1

| r2 � r1 |
(G2)

Since the direction vectors are in opposite direction:

m1r̈1 +m2r̈2 = 0 ) (m1 +m2) = R̈ = 0
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Consider the following diagram

O

r1
r2

m1

m2

R

Put r1 = R + s1 and r1 = R + s2

m1s̈1 = Gm1m2

s2 � s1

| s2 � s1 |
m2s̈2 = Gm2m1

s1 � s2

| s1 � s2 |

and put r = r1 � r2 = s1 � s2

We get a second order differential equation

r̈ = �G(m1 +m2)
r

| r |3 = �GMr

| r |

Note.
s1 =

m2r

m1 +m2
s1 =

m2r

m1 +m2

From an earlier result:

E =
1

2
m1 | r1 |2 +

1

2
m2 | r2 |2 �

Gm1m2

| r1 � r2 |

=
1

2
m1 | R + ṡ1 |2 +

1

2
m2 | R + ṡ2 |2 �

Gm1m2

| r1 � r2 |

=
1

2
m1

����Ṙ +
m2ṙ

m1 +m2

����
2

+
1

2
m2

����Ṙ +
m1ṙ

m1 +m2

����
2

� Gm1m2

| r1 � r2 |

=
1

2
(m1 +m2)

���Ṙ
���
2

| {z }
(1)

+
1

2

m1m2

m1 +m2
|r|2

| {z }
(2)

�Gm1m2

|r| (⇤G)
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In (⇤G), we have the following:

1. (1) is conserved since center of mass acceleration is constant and hence velocity is
constant and therefore the Energy associated with COM is constant

2. (2) is nothing but Kinetic Energy + Potential Energy which is constant and hence
conserved.

and therefore Energy in a 2 body gravitational system is conserved

2.11.1 Angular Momentum in a 2-body gravitational system

By the definition of Angular Momentum (2.19)

J = m1r1 ⇥ ṙ2 +m2r2 ⇥ ṙ2

= m1(R + s1)⇥ (R + s!) +m2(R + s2)⇥ (R + s2)

= (m1 +m2)(R⇥ Ṙ) +m1s1 ⇥ ṡ2 +m2s2 ⇥ ṡ2

= (m1 +m2)R⇥ Ṙ +
m1m2

m1 +m2
r ⇥ ṙ by substituting s1 and s2

and again these are both separately conserved as shown before in conservation of an-

gular momentum, since we the force is proportional to r, i.e.

r̈ / r

angular momentum is conserved

Remark. In the end, we do not need to care about the center of mass (2.23) motion
since as it is a constant velocity motion and hence it is conserved and has no
contribution to angular momentum and energy of the system.

2.11.2 Reduced set of equations ignoring R

Ignoring R, the system of equations gets reduced to

r̈ = �G(m1 +m2)

|r|3

" =
1

2

m1m2

m1 +m2
|ṙ|2 � Gm1m2

|r|

L =
m1m2

m1 +m2
r ⇥ ṙ
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Here both L and " are constants.

Remark. Note that L is conserved and perpendicular to r and ṙ and therefore we
can use polar co-ordinates.

2.11.3 Solving in Polar Co-ordinates

Let
M = (m1 +m2) and µ =

m1m2

m1 +m2

Then the required equations become

r̈ = �GMr

|r|3

" =
1

2
µ|r|2 � Gm1m2

|r|

L = µr ⇥ ṙ

Note.
L · r = 0 and L · ṙ = 0

So the motion is orthogonal to L

Solving in polar co-ordinates to describe r,

r = |r|er ⌘ rer

Then as seen before the derivatives of r are:

ṙ = ṙer + r✓̇e✓

r̈ = (r̈ � r✓̇
2)er + (2r✓̇ + r✓̈)e✓
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Therefore the angular momentum can be seen as

L = µr ⇥ ṙ

= µrer ⇥ (ṙer + r✓̇e✓)

= µr
2
✓̇er ⇥ e✓

And therefore calculating the magnitude of Angular Momentum (2.19),

|L| = µr
2
✓̇|er ⇥ e✓|

= µr
2
✓̇|er||e✓| sin

⇡

2
orthonormal basis vectors

= µr
2
✓̇

) |L| = CONSTANT = µr
2
✓̇

It is convention to represent r
2
✓̇ = h and hence we get:

µr
2
✓̇ = µh ) r

2
✓ = h

Furthermore, calculating the magnitude of velocity (2.2),

|ṙ|2 = ṙ
2 + r

2
✓̇
2 = ṙ

2 +
h
2

r2

and substituting this in the equation for ", we get

" =
1

2
µṙ

2 +
1

2

µh
2

r2
� Gm1m2

r| {z }
effective potential

Solving the Equation of Motion Polar

The equation of motion for this is

r̈ = �GM

r2
er ) (r̈ � r✓̇

2)er = �GM

r2
er

) (r̈ � r✓̇
2) = �GM

r2

) r̈ � h
2

r3
= �GM

r2
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Note (Nice Trick for solving the differential equation). Put

r =
1

u
u = u(✓) and ✓ = ✓(t)

and therefore finding the first and second derivatives:

1.
ṙ =

dr

dt

=
d

dt

✓
1

u

◆

=
d✓

dt

d

d✓

✓
1

u

◆

= ✓̇

✓
� 1

u2

◆
du

d✓

= hu
2

✓
� 1

u2

◆
du

d✓

= �h
du

d✓

2.
r̈ =

d
2
r

dt2

= ✓̇
d

d✓

✓
�h

du

d✓

◆

= hu
2

✓
�h

d
2
u

d✓2

◆

= �h
2
u
2d

2
u

d✓2

Therefore the equation of motion becomes

�hu
2d

2
u

d✓2
� h

2
u
3 = �GMu

2 ) d
2
u

d✓2
+ u =

GM

h2

. Therefore we need to solve this homogeneous second order differential equation

d
2
u

d✓2
+ u =

GM

h2
(2.34)
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Solving (2.34) using Ansatz u = e
�✓

u = A cos(✓ � ✓0) +
GM

h2

Or more conviently, we can write

r =
1

u
) u =

1

r
=

GM

h2
(1 + e cos(✓ � ✓0))

where e is the eccentricity of the orbit and ✓0 is the true anomaly.

Checking if Energy is conserved
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Properties of Orbit

Normal to take the excentricity e>0 :

· if <1 then 20 (0(e(1)
· if = 1 then 3 = 0 (e = 1)

· if >1 they 230 (es1)

(i) e = 0 :

if = 0 then n= = M or (r is constant=>> circular)

Here sincea is constant , we have a circular orbit.

Further put
(*1)l
= r= => l = radius of orbit

Furthermore
, calculating ~

Circumference 25M

==
⑪

Time to go all the wayround isT
, then

=> T= :=

where T is the orbital time.

(ii) 0 < e < 1

Here r = l
*2)(It ecost
from (*11th and u = Hecos(0-5)

=Fl

Since in (*2) , OCeC1 , the denominator can never disappear. Further , h is periodic
and bounded.

(a) Orbit is periodic and bounded

0 = m = Mmax-fe periodic so same at 8 : 5 , 35, 5x, . ..

0 = 0 => Min to periodic so same at 0 = 0 , 25 , 45 , 6,



Converting to Cartesian Co Ordinates

Note



Orbital Period



Definition:

Note:



Energy in Elliptical Orbit



Note:

Converting to Cartesian Co Ordinates

Note



Calculating angle of Orbit

Definition:



Note:

Calculating Speed of Orbit



Definition:

2.12 Gravitational Potential Revisited

Herei is minimum when 0 = 0 turning point of orbit , then we get
2+ v2 =

GM COS (max at O = 0)

quare of the escape velocity
·pin Escape Velocity of parabolic orbit

mane If = 2+ v2 =

GM COS

i Consider the sun as a sphere of constant density. (5)dV

mu 1-y P
Here ⑳ & &

· u(s) is the mass density M

· dV is the volume element. O
⑨ M

centre
Therefore mass at that point is :

↑Y
S

mass = density volume T

=> m
*
= M(z)dV R

Total volume : V
·

The gravitational potential due to the extended object is (integrating over total volume)
E = mGm(s)dV (*P7)S (1 -1)

The total mass of the object of volume V is

M =(M(z)dv Sand MR = M(s) -dV

Consider following conditions
(i) Constant mass density sphere ofmadius a

(ii) Put the origin at center of mass zuM(s) constant, say M() =Nou

at center of sphere as mass density is constant





Spherical Polars

Calculating volume element



2.12 Gravitational Potential Revisited (contd.)



Note

Note:



2.13 Rigid Bodies

Total Kinetic Energy and Angular Momentum



Note:



Calculating Total Kinetic Energy 



Note:

Calculating Total Angular Momentum 

Note:

Note:



Rigid Body Motion Near Earth Surface

Change in Angular Momentum 



Constants of Motion 





Examples Computing Moments of Inertia







 3. Lagrangian Dynamics

3.1 Calculus of Variations



3.2 Euler-Lagrange Equations



Minimum Point of Euler-Lagrange Equations 

3.3 Remarks



Note:



3.4 Principle of Least Action 



Definition:

Note:

Remarks



Note:

3.5 Examples
Example 1: 1D System 



Note:

Note:



Example 2: A Simple Pendulum 



Example 3: Particle in a Plane



3.6 Rigid Bodies - Spinning Top










