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1. Vectors

1.1 Introduction

Definition 1 (Vectors). Vectors are mathematical objects with both magnitude and
direction.

Geometrially, vectors can be thought of as arrows/direced line segments in space in space.

B

<u

A
Figure 1.1: A Vector

Example (Examples of vectors). Here are some important examples of vectors

e The displacement of a particle is a vector.
e The velocity of a particle is a vector.

e The force acting on a particle is a vector.

Notation. Vectors can be denoted in 3 ways,
e Using boldface notation: V
e Underlining: V.

e An arrow over the symbol: 1%

1.2 Euclidean Three Space E?

Definition 2 (Euclidian Three Space). Euclidean Three Space is the set of all ordered
triples of real numbers.

E? = {(z,y, 2)|z,y, 2 € R} (1.1)

The axes of E? are the z, y and z, i.e.
z=(2,0,0),y = (0,y,0),2 = (0,0, ) (1.2)

We orient the axis according to the right hand rule. This is shown in the following
diagram:
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Z

Figure 1.2: Axes in E?

Note. We need to pick an origin and stay with it. We will use the origin (0,0, 0).

1.3 Vectors in E?

1.3.1 Distance in E*

Let P and P be points in E*. And let P = (x,y,2) and P’ = (2,9, 2).

Definition 3 (Distance in E*). The distance between P and P’ is defined as:

dP,P)=+(e -2 P2+ (y—y)?+(z—2)? (1.3)
This is illustrated in the following diagram

<
AN

Figure 1.3: Distance in E3

CHAPTER 1. VECTORS 3
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1.3.2 Vectors in E?

Definition 4 (Vectors in E?). A vector in E? is an ordered triple of real numbers.
U= (Ul,Ug,Ug) (14)

Notation. We can also represent vectors using column notation

1.4 Vector Algebra

1.4.1 Vector Magnitude

Definition 5 (Vector Magnitude). Let ¥ = (vq,v2,v3) be a vector in E3. The magni-
tude of U is defined as:
|9]] = 4/v? + v3 + v (1.5)

1.4.2 Vector Addition

Definition 6 (Vector Addition). Let ¥ = (v, v2,v3) and W = (wq, wa, w3) be vectors
in E3. The sum of ¢ and & is defined as:

U4 W = (v1 + wy, v3 + Wwe, v3 + w3) (1.6)

Geometrically this can be seen as the diagonal of a paralleleogram. Geometrically it is
clear that you get the same effect as travelling along ¢ and then «

SN

ey
_|_
g,

g,

<l

O
Figure 1.4: Vector Addition
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Vector Addition Properties

U+

(@

Theorem 1 (Commutativity). Suppose ¥ and @ be vectors in E3.
If ¥ = (v, v9,v3) and W = (wy, wy, w3) be vectors in E3, then

Proof. Let i, ¥, % be vectors in E3. Then

Proof. Let i, ¥, be vectors in E3. Then

_ul + (Ul + U)1>-
U + (UQ + ’LUQ)

U1 w1

V2 W2 ) =

v3| [w3 | u3 + (vs + ws) |
_(ul + Ul) + wl_

= | (ug + wa) + vo
_(UQ —|— ?}3) + wg_

Uy + Vq w1
= |U1 + U1 + Wo
| U1 + 11 w3

CHAPTER 1. VECTORS

v+ w=w+v (1.7)
w1 (1 + wy |
W | = |v2 +wo
Ws | Us + ws |
[w; + v ]
= |wy 4+ v commutativity in R
_w3 + ’U2_
-wl 01
= (wy| + |v2| = U_j —+ 17
_’LU3 V3
O]
Theorem 2 (Associativity). Suppose %, ¥ and @ be vectors in [E3.
If @ = (uy,ug,u3), = (v1,v9,v3) and W = (wy, wy, w3) be vectors in E?, then
U+ (V+w) = (W4 9) + o (1.8)

commutativity in R
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1.4.3 Scalar Multiplication

Vectors can be multiplied by scalars to get a new vector. This is called scalar multipli-
cation. The direction of the new vector depends on the sign of the scalar.

Av when A > 0

IS4

Av when A < 0

Definition 7 (Scalar Multiplication). Let ¥ = (v1, v2,v3) be a vector in E3 and A € R
be a scalar. The scalar multiplication of v and \ is defined as:

AU = ()\Ul, )\1)2, )\’03) (19)

Multiplying by a Scalar

Let ¥ be a vector in E3 and \ be a scalar. Then:
o If A > 0, then A7 is a vector in the same direction as ¢ but with magnitude
All 7l
e If A < 0, then A7 is a vector in the opposite direction as v but with magnitude
ALl

Scalar Multiplication Properties

Theorem 3 (Distributivity over Scalar Multiplication). Let @ and ¥ be vectors in E3
and A be a scalar. Then
AU+ ¥) = M+ U (1.10)
Proof. Let @, 7 € E?
Uy + v _)\(ul + Ul)
)\(ﬁ+ U) =) Uy + Vo | = )\(Ug + ’UQ)
Uz + V3 _)\(Ug = U3)
_)\ul + )\Ul )\Ul )\Ul
= [Aug + Avg | = |Aua| + [Avg| = A+ M\
| Auz + Avs Aug AUs
O

6 CHAPTER 1. VECTORS
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Theorem 4 (Associativity). Let ¢’ be a vector in E3 and A, u be scalars. Then

(Ap)T = A(uv) (1.11)
Proof. Let v € E3
1 [(Ap)vy |
(AT = (Ap) |v2 | = | (Ap)vz
U3 _()\M)U3_
[ A(po1) ] fo1
= [AMpv2) | = A | poz| = AMp0)
_)\(MU3)_ HU3
]

Theorem 5 (Distributivity over Vector Addition). Let ¥ be a vector in E? and A, u be
scalars. Then

A+ @)U = X0+ pv (1.12)
Proof. Let ¥ be a vector in E3
n (A + p)vr
A+p)T=A+p) [v2 = (A +p)v
U3 (A + s
[\vy + py Avy Py
= | Ave + pve | = |Avg| + |pve | = A0+ pv
| A\v3 + pvs AUz HU3
O]

Theorem 6 (ldentity). Let ¥ be a vector in E3. Then

17 =7 (1.13)
Proof. Let ¥ be a vector in E?
17 = 1(vy, vg,v3) = (1, lvg, 1ug)
- (711,’1)2,113) = Il_f
]

CHAPTER 1. VECTORS 7
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1.4.4 Vector Subtraction

Definition 8 (Vector Subtraction). Let @ and w be vectors in E3. The difference of

v and W is defined as:
v—w=v4+(-1)w (1.14)

Geometrically we can see this in the following diagram:

1.4.5 Unit Vectors

Definition 9 (Unit Vector). A unit vector is a vector with magnitude 1. The unit
vector in the direction of v is denoted by ©. Unit vector is calculated by:

v
1]

1.5 Standard Basis

Standard basis vectors are also known as standard unit vectors. These are used to

represent vectors in [E3

Definition 10. The standard basis vectors are defined as follows:

i =(1,0,0)
j=1(0,1,0)
k=(0,0,1)

such that |2 |[=| 7 |=| k | .

Any vector can be represented using standard basis vectors.

Suppose you are a given a vector ¥ = (v, v, v3). This can be represented as follows:

U1
U= (%) :U1i+U2j—|—U3k’ (]_]_6)
U3

8 CHAPTER 1. VECTORS
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Example. Let ¥ = (2,3,4). Then,

7=2+ 37+ 4k
= 2(1,0,0) + 3(0,1,0) + 4(0,0,1)
= (2,0,0) + (0,3,0) + (0,0,4)

= (2,3,4)
Z
AN
k
> > Y
; j
X

Figure 1.5: Standard Basis Vectors

Algebra with Standard Basis Vectors

Example. Let ¥ and @ € E3

1)1:|:w1 R
+ W= |vewy| = (v1 w1t + (ve £ wy)g + (v3 £ ws3)k
’()3:':21)3

<

Example. Let ¢ and @ € E3

)\Ul
M= | vz | = (A1)i + Awa)j 4+ (ws)k
)\?J3
Note. The 0 vector is:
0
0= [0 =0i+0j+ 0k

0
Any vector ¥ € E? added to the 0 vector is itself:

T+0=17

Here is an example of algebra with standard basis vectors:

CHAPTER 1. VECTORS 9
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Example. Let v = (2,3,4) and @ = (1,2,3). Then,

v+ 4= (2,3,4) +(1,2,3)
= (24+1,34+2,4+3)
=(3,5,7)

Alternate Notation for Standard Basis Vectors

Notation. We can change notation for standard basis vectors as follows:

—

1= €1 j = 52 k= 53
and therefore we can write:

3
U= U12'—|—U2j+?]3k = E Uaga

a=1

1.6 Position Vectors

Definition 11. A position vector is a vector that represents the position of a point
in space relative to the origin, O.

Let any vector ¢ be the position vector of a point P in space. Then, the coordinates of P
are given by the components of v

<y

v

Figure 1.6: Position Vector
So the position vector of P is given by:

=z +yj + kk (1.17)

<L
Il
o R

10 CHAPTER 1. VECTORS
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1.7 Scalar Product

Scalar product is also known as dot product, is a function denoted by -:
CExE}P =R
i.e. it takes two vectors and returns a scalar.

Definition 12 (Planar Angle). Let ¥ and W be two vectors in E2 and 6 € R.

The planar angle between two vectors v and « is the angle # between them in
the plane spanned by ¢ and .

Choose the planar angle 6 such that

0<o<nr

Definition 13 (Scalar Product). Let ¢ and & be two vectors in E? and § € R be the
planar angle between them.
Then, the scalar product of ¥ and « is defined as:

—

U-w=|7|| | cosb (1.18)

Note. Two vectors do not lie in the same line, always in the same plane. By the
convention, the angle 6 € [0,7] =0 <60 <.

1.7.1 Properties of Scalar Product

Theorem 7 (Commutative). Let ¥ and @ be two vectors in E3. Then,
T-d=w-v (1.19)

Proof. Since the planar angle @ is the same for both # and 0,

U =| V|| | cosb
|

=| & || V| cosf
— @

0)

CHAPTER 1. VECTORS 11
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Theorem 8 (Orthogonal Vectors). Let @ and @ be two vectors in E3. Then,

Fw=00ld (1.20)

Proof. When ¢ L 0, the planar angle § = 7. Therefore,

U-wW=|7|| | cosb
—| || @ | cos ~
2

=| || @ |-0

i.e. U and W are orthogonal. O

Theorem 9 (Distributivity over scalar multiplication). Let ¢, € E3 and A € R. Then,

A@ @) = (\D) - @ = & - (MD) (1.21)

Theorem 10 (Distributivity over Addition). Let @, ¥, € E3. Then,

i (T+0) =i 0+d @ (1.22)

Note. Properties of scalar product for standard basis vectors:

D0 S sy YD G <o
T o T[T o ;.>
I |

O O O = =

>
I

1.7.2 Scalar Product in terms of Components

Theorem 11. Let 7@ = (v1, v9,v3) and @ = (wy, ws, w3) be two vectors in E3. Then,

3
U= ZUZ'U)Z‘ = VW1 + VW3 + V3Ws; (123)
i=1

12 CHAPTER 1. VECTORS
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Proof. Let ¥, w € E3. Then,

U= ('Uli oy '025 + Ugl%) o (wli + ng + w;;l%)
= - (wl% + w2j + w3’%) + v - (wlg + wﬁ + wsl;) + v - (wli + wﬁ + w3i€)

= Vw1l - § + DysT ] -+ Dptogt K - DT < 4 VoWs) - ] + aws] K
+ gtk 1 + ek ] + vawsk - k

= 1wy + VaW9 + V3Ws3

3
= E V;W; = VW1 + VaWa + V3Ws3
i=1

1.7.3 Using Scalar Product to find the length of a vector

We can also use scalar product to find the length of a vector.

Theorem 12. Let ¥ € E3. Then,
|7 |= VT 5 (1.24)

Proof. Let 7 € E3. Then,
| 7| = ¢/v? + v3 + 02

= \/Ul’Ul + (HX%) + V3U3

=VU-U

]

1.7.4 Using Scalar Product to find the angle between two vectors

Theorem 13. Let #,w € E?. Then, the planar angle f between @ and 1 is given by:

U -0
@ =cos | — 1.25
<|ﬁ||w|> (1.25)

CHAPTER 1. VECTORS 13
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Proof. Let ¥, w € E3. Then,

—

U-W=| V||| cosb
= V1w +v2w2 +UgtU3

V1W1 + Vowg + V3wWs
||| |

#92608_1(%)
| 7 || @ |

= cosf =

Note. Some basic properties of scalar product:
L. If 0w =0, then 0 = 7.
2. If ¥-w > 0, then 0 € [0, 7).

3. If ¥~ w < 0, then 0 € (5, 7).

1.8 Cross Product

Cross Product also known as Vector Product is a function denoted by
x : B3 x E3 — E3

i.e. it a binary operator on 2 vectors ¢ returns a vector

Motivation for Vector

Given 2 non-zero vectors 4 and ¥, construct a new vector say «w such that it is orthoog-
onal to both @ and ¥

W=1UXUnp

S
N

_)
v
Figure 1.7: Cross Product

14 CHAPTER 1. VECTORS
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Definition 14. Given 2 vectors @ and ¥ € [E3, the cross product of @ and ¥ is the

vector w of length
[[@]| = {|a|[|v]] sin 6 (1.26)

where 6 is the planar angle between « and v and direction given by the right
hand rule

We can determine the direction of @ by using the right hand rule as shown in Figure
1.8

Figure 1.8: Cross Product Direction

1.8.1 Properties of Scalar Product

These properties can be seen as a consequence of the right and rule.

Theorem 14 (Anti-Commutativity). Let ¥, @ € E? Then

1

X @ = —(iF x 7) (1.27)

g
Il
S
X
S
N
7

U

N

<Y

S
N

A4
@ = — (i x V)

—

v
Figure 1.9: Cross Product Anti-Commutativity

CHAPTER 1. VECTORS 15
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Theorem 16 (Multiplication by Scalar). Let #, 7 € E* and A € R Then,

M@ % 7) = (M) x & = @ x (A7)

Note. Properties of cross product on standard basis vectors

I |
o S x

So T G, Ty RSN
| | |
o S0 T

X X x x X X
T Lo <o oo [T o

Note. The cross product is 0 when 2 vectors are parallel.
If ¥ = A, then

0 ifA>0

1 ifA<O

Since sin 0 = sin7m = 0, we get
| x U |=|d|l7]sind=0

And hence
0

UXU

<o <o
I

) X 0
| X 0
X 0

T o o,
bl
I

16 CHAPTER 1. VECTORS

(1.28)

(1.29)

And therefore we can derive the following properties about standard basis vectors
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1.8.2 Co-Ordinate Version of Cross Product
Theorem 17 (Co-Ordinate formula for Cross Product). Let @, ¥, @ € E3. Then

@ X T = (upvs — ugve)i + (ugvy — u1v3)] + (uyve — upvy )k (1.30)
Proof. Let @, 7 € E3. Then

UX U= (uli -+ UQ'; —+ 'LL3]A€) X (?)1% + UQ} -+ U3i€)

= (uli X Ulg) —+ (ul'z X Ugj) -+ (uli X 1)3]% + ('LL25 X Ulg) —+ (Ug} X 023) -+ (Ugj X U3]A€>

)
+ <U3];’ X 1)1%) -+ (U3IIA€ X /UQ.;) + (Ug]% X Ugl%)

= X i+ (Ul'UQ% X }) + (ulvgi X l%) + (ugvlj X %) + UsgT X J + (ugvgj X /Ac)
+ (u;wl/;: X 1) + (ugvgl% ) 1 uspsk < k

= (Ug’l}g — U,3’U2)/2 + <U3U1 — Ulvg)j + (Ul’l)g — UQUl)l;'

m
Note. We can also write the cross product as
gk
UX U= U1 Uz U3 (131)
V1 Uy U3

Note. Showing that @ x v is orthogonal to both « and v

U+ (U X V) = ug(ugvy — ugve) + ug(uzvy — u1vs) + uz(uivy — ugvy)
= U1U2V3 — UIU3V2 -+ U2U3V1 — U2U1V3 —+ U3U1V2 — U3U2V]

=i (@ x) =0

and hence orthogonal. Proof similat for the other one.

1.9 Kronecker-Delta

As shown before, the properties of the scalar product, the orthonormal basis vectors
have the following properties

e1-ea=0=¢e;-e3=¢€5-¢€

and
61'61:1262'62263'63

We can abbreviate the definition using the Kronecker-Delta

CHAPTER 1. VECTORS 17
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Definition 15 (Kronecker-Delta). Let a,b €{l, 2, 3}. Then we can write:

1 ifa=b=1,2
€q €p = 1 “ ’ 73 :5ab (132)
- = 0 ifa#b

This will also be useful for calculating scalar product

1.9.1 Scalar product using Kronecker-Delta

Theorem 18 (Scalar Product using Kroncker-Delta). Let 4,b€ E3. Then
5 3
i-b=>" ab (1.33)
i=1

Proof.

0 1= (L) - (Zhe)
k=1 =1
:Zak ble_k - @
k, 1

= Zak by O
k, 1

Now by the definition of Kronecker-Delta 1.32, it is 0 for all cases except when k = [.
where it has a value of 1 So the summation becomes:

k=1
m
1.10 Levi-Civita
We can represent the cross product using Levi-Civita Symbol
Definition 16 (Levi-Civita). Let a,b,c € 1,2,3. Then we write:
0 if a = b = c or more generallya, b, cis not permutation of 1,2, 3
Eabe = § +1  if a,b, c is an even permuation of 1,2, 3
—1 if a,b,cis an odd permuation of 1,2, 3
(1.34)

18 CHAPTER 1. VECTORS



Chapter 1: Vectors

Note. Value of £, depends on the parity of the permutatiom.

1.10.1 Cross product of Orthonoarmal Basis Using Levi-Civita

Definition 17. Then we can write the cross product Orthonoarmal Basis Vectors
€1, ea, ez in the following way

3
Caxe=) & e (1.35)
=1

1.10.2 Cross Product of Vectors in Levi-Civita Notation

Theorem 19 (Cross Product using Levi-Civita Notation). Let @,b € E3. Then

3
ixb=> (ixb)men (1.36)

-

(@x D)m =2 ¢, ayb, (1.37)
!

Proof. Let

3
AP S b=bhe =Y e

k=1 =1

Observe the use of Eintein’s Notation (see below) and observe that

= (Lam) x (Lha)
k=1 =1

= Z ag bk € X €
k, |
And therefore by 1.35, we can rewrite it in the following way

= g T 0 Epm Cap

k, I, m

Define the mth component as
(@ X b)m = Z f.kmakbl

and hence we get 1.36 [

CHAPTER 1. VECTORS 19
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1.11 Einstein’s Notation

Definition 18 (Einstein's Notation). If two indicies are repeated, then they are
summed and we can suppress the summation

1.11.1 Scalar Product using Einstein Convention

Example.
3

> apby = aiby, = SKQ Gy byg

i=1

Here the repeated index is k

.—

1.11.2 Cross Product using Einstein Convention ( aX &b Z'abc 9(-)

Example. Here the repeated index is k and [ W/PM{'Q W\OlCX

v Kandl
axb) § Egaib = £, kb,

1.12 Triple Scalar Product

Theorem 20 (Triple Scalar Product). Let @,b,¢ € E3. Then

@ (bx¢)= E,Wapb,}(,, (1.38)

Note. We have used Einstein’s Notation for Scalar and Vector Product as well as
Levi-Civita Notation 1.34

Proof.

a - (bxc)=ap(bxc)
= Uy Egpe O G5

= Bup @y O G5

]

Note. Although not mathematically valid, we can use the determinant method

ay Gz das
a - (l_) X Q) = det b1 b2 b3

1 C2 C3

20 CHAPTER 1. VECTORS
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1.13 Useful Properties of Kronecker-Delta and Levi-
Civita

Theorem 21.
EpgrEruv = (Opudqv — OpvOqu) (1.39)

Note. These are useful identity/trick to remember (remeber the use of Einstein’s
Notation)
Oaa = 011 + 022 + 033 = 3

1 ifa=c
6aéc:5a50+5a60+6a(sc: :6(10
bUb, 1Y1 202 3Y3 {O ifa;éc

5ab"b =g
1.14 'Triple Vector Product
Theorem 22 (Triple Vector Product). Let a, b, c € E3
ax(bxg) =bla-c)—cla-b) (1.40)
Proof. Taking three vectors a,b and ¢, we calculate the pth component first:

[a x (b % c)lp = €pgr aq(b X ¢)r

= Epgr Aq Eruw bu Co
using identity 1.39, we get
[a % (b x )]y = (Spudg — OpuOgu)agbucy

Use the explanation below for completion O

CHAPTER 1. VECTORS 21
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\t/ J L
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Figure 1.10: Triple Vector Product Proof
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1.15 Vector Equation of Lines

Definition 19 (Vector Equation of Lines). The position vector of z of an arbitrary
point P(x,y,z) on the line in terms of p and v

z=p+tv forteR (1.41)

Line L

Line parallel to v

v

Figure 1.11: Vector Line

1.15.1 Parametric Equation of a Line
Note. Every point x can be written as
T = zi + yj + 2k

Therefore we can form a parametric equation of a line

Definition 20 (Parametric Equation of a Line).

T = xy + tug
Y = Yo +tvy fort € R (1.42)

z = 2y + tus

1.15.2 Vector Equation of Line going through 2 points

Definition 21. Let P and () be two points on the line and let their position vectors
be p and ¢ repectively. Then the direction vector is:

PQ=q-p
and the vector equation line is

z=+4t(q—p) forteR (1.43)

The following diagram depicts this:

CHAPTER 1. VECTORS 23
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Figure 1.12: Vector Line

1.16 Vector Equation of Planes

Definition 22 (Vector Equation of Planes). Given a point P with position vector p
and 2 vectors not lying on the same line i.e. not collinear, then there is a plane
that passes through P parallel to both u and v

The position vector of an arbitrary point x is

z=p+sutty forsteR (1.44)

This is known as the plane spanned by u and v going through P

1.16.1 Parametric Equation of a line

Definition 23.
T = Tg+ su; + tug

Y = Yo + suz + tv for s,t € R (1.45)

z = 29+ sug + tvs

1.16.2 Vector Equation of Planes using 3 Points

Definition 24. Given 3 non-linear points P, () and R with position vectors p, g and
r respectively. Note that the vectors

(p—r) and (¢—r)

are two direction vectors parallel to the plane. Then taking r as the starting
point, the equation of the plane becomes

z=r+s(p—r)+tlg—r) forsteR (1.46)

1.16.3 Normal Vector to a Plane

Another way to define a plane is by noticing that (in 3d) there is exactly one line which
is perpendicular to the plane. A vector parallel to this line is called a normal vector.

24 CHAPTER 1. VECTORS
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Note (Unit Normal). If the normal vector has unit length, then it called a unit

normal
Thus if n is a unit normal to a plane then there is exactly one other unit normal

to the plane namely —n

Definition 25 (Equation of Plane using Normal Vector). If p is a position vector of
a known point in the plane and x is any arbitary point on the plane, then

(z —p)

is parallel to the plane and thus orthogonal to the normal. Therefore equation of a
plane can be given as

(x—p) - n=0 (scalar product) (1.47)

or multipying out the Scalar Product

z-n=p-n

1.17 Change of Axes

1.17.1 Change of Origin

Consider the following diagrams:

A

Here we have 2 vectors

e 00

—
e OO0

Shift of Origin

The shift of origin is represented by s is relative to O, then

Note. s could depend on time
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Note. Consider the following diagram

@)

Let @ and b represent vectors to A and B relative to O. Similarly let ¢ and b
represent vectors relative to O ' . Then:

/ /

a —b=(@a-s) — (b—s)=a-b

As we can see the displacement from a to b is the same as the displacement from
a to l_)l.

1.17.2 Shifting and Changing Unit Vectors

!

€a

Consider 2 sets of orthogonal unit vectors e, and e, where a € {1,2,3}.

We can say that each of the @/ is a linear combination of each if the e,. So we can say
that for a matrix R,
e, = Ray €& (%)

Since the index b is repeated twice, we use the Einstein Convention. This is equiva-
lent to:
¢, =Raer + Rax ez + Raz e

We need to work out that R, is.
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First we require from the definition of Kronecker Delta 1.32:

I

/
dac = €, - €,

=Rupep - Rea e from equation ()
= R Req € - €q
= RapRed Obd

Therefore we get:
5ac = RabRcd 6bd

By again using the Einstein’s Notation the index b and d is repeated twice. Now in
the RHS |, dpq is 1 only when d = b. Hence:

6&0 - RabRcd 6bd

= 5ac - RabRcb

In the expression d,. = Ru,Re it is not quite matrix multiplication since the columns
of the first b is not equal to the row of the second ¢ . Therefore we transpose the
matrix and we get the following:

5ac - RabRcb = Rab(RT)bc = (RRT)ac

= 640 = (RR"),.

Since d,. is the Kronecker Delta 1.32/identity matrix, we can say that:

1
RR"=1=1{0
0

o = O

0
0
1
and hence R is an orthogonal matrix. Also note that
det(¥) = 1 =det(RR")
=det(R) det(R") property of det function

=(det(R))? since det(R) = det(R")

Hence we get the expression:
1 = (det(R))?

= det(R) =1
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Because R is continuously connected to the identity matrix we chose +1. Therefore

any matrix R with the property:
det(R) =1

is a valid matrix.

The COMPonenb of a veckor ave also velaked bU the oYHnoJoM\ matvix
x&g_lf& thlo"Rabe = \ng_b

= .:x,b:: (X_al Kab

No\:c H\al' :
[
Xada = R %, V\ao“f(RTK)w‘xbxc = XX

> [tz (sl o

() TF +he vobatfon, of axes is constonts then, unik veckor 0, each, ¥ime fvame
ave Constant and a position veckor is fgiven bU

/
T=dpa =X En

Velocity can be calculated d?{fcvenhahno wrd hime

dy - doae! — dug
£ kT E

(ﬁ) Tf vobabton of axes i ot 'mo(epeno\an’c of £ime (not constant)
€a= Rab(‘?).@_b
DH'-ermHa{:?na
. ] . . 'r
€a=Rap¢b = RapR &

Note: T ‘ .
Sinee R is ovl:hojov\a\, RR'=1. Tn index notation

T _ _
KaxbRb(, = RabRCb- Sac,
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p\abﬂcb + RabR =0 > R Rcb R K
Hence o feovderrm\t, the devms in +he sum, on ‘H\L Yij"‘{" Nt find
R Rcb Rchab
and +hig }mP‘ics the st ahmn{;
. . T - T
P\RT= ’(R RT) = RRT 1S aul:is:’mme{—vic

Since RR 15 anhsqmmh.o

( >c— izabRbc Zcd ¥4

The aac(evahof\, veckw 16 (075 ime Tndependant)

Az &L = o420 xv'+ wx(wRy)
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2. Newtownian Dynamics

In this section, we deal with particles Particles are an idealization since real objects even
if very small have very small a spatial extent.

Particles will be represented by a point in space that movies in a trajectory denoted
by r(t) which is a vector denoting its position at a time ¢ relative to a specified origin.

2.1 Basic Kinematics

2.1.1 Position of a particle

Definition 26. A point particle’s positon at time ¢ on a trajectory relative to an
origin O can be described by a position vector relative to an origin O

The position vector is r and can be represented using basis vectors.

r(t) =xi+yj+ 2k (2.1)

Note (Using Einstein Notation to describe position). Using Einstein’s Notation we
can also represented it in the following way:

r(t) = Aa€a

2.1.2 Kinematics: Velocity and Acceleration

In position vector of a particle (2.1) r assuming that the Orthonormal bais unit vectors
t,j and k are constant, we can write velocity and acceleration in the following way:

29
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Velocity

Consider the following diagram:

From the diagram above:

or =r(t+4dt) —r(t)

Dividing by 6t and taking the limit as 6 — 0 we get

Definition 27 (Velocity of a Particle).

dr(t)
dt

P = = Nea = &1+ yj + 2k

acceleration

Similarly acceleration can be definined in the following way:

Definition 28 (Velocity of a Particle).

di(t)
dt

i= S = Nea = i+ + 2k

In terms of limits

5(0) = 100 = aft) = i, (X0 =20)
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2.1.3 Examples of Trajectories

Straight Line Trajectory

Consider the following diagram

Using Vector equation of Lines (1.41), we get the following equation for r(t)
r(t) =r+tv v,T9 are constants

Then we can find the Velocity (2.2) and Acceleration as (2.3) as

u(t) = dtdit) =r(t) =
a(t) = 2 1y — 0

Parabolic Trajectory

Definition 29 (Parabolic Trajectory). A parabolic trajectory is defined as

1
r =1y + Yyt + @§t2 (2.4)

where vy and 7y are constants

Acceleration (2.3) and Velocity (2.2) are

o v(t) = dtd(tt) =17(t) = vo + aot
o alt) = ilt) = (0 + aof) = a0

Example of a Parabolic Trajectory: Consider the following equation:

1
r(t) = (upi + vok)t— = gt’k
——— 2

vo
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|7

=3

—~
~+

=

Here, separating the components if i and k, we get the following (scalars):

x(t):u0t=>t:$

and substituting for in the value for z(¢) (component of k),

Lo
z = vl — §gt
voxr 1 /ax\?
()
Uo 2 Ug

And therefore as we can see, the equation for z() is in the form of a parabola.

Circular Trajectory

Definition 30 (Circular Trajectory). Consider a particle trajectory by the described
by the following equations

13

(t) = a(cos(wt)i + sin(wt)j) (2.5)

e z(t) = acos(wt) i.e. the z-component

e y(t) = asin(wt) i.e. the y-component

Note.
? +y* = a®cos?(wt) + a’cos*(wt) = 2*+y*=a

which is the equation of a circle of radius a.

Velocity in a circular trajectory
First calculating the Velocity (2.2),

7(t) = a(—wsin(wt)i + w cos(wt)j)
where:

e i(t) = —a wsin(wt) i.e. the velocity in z-direction
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e y(t) = a wcos(wt) i.e. the velocity in y-direction

The magnitude of velocity is:

|7 [* =2+
= a’w?sin’(wt) + a*w® cos?(wt)

— a2w2

=1 [=lv]=aw

We can see that velocity has a constant magnitude, but is clearly changing in direc-
tion. The particle is moving in the anti-clockwise direction. (This can be verified by
checking any random point).

Acceleration in a circular trajectory Calculating the Acceleration (2.3),
() = —aw?(cos(wt)i + sin(wt)j)

So as we can see from the equation 7*(t) = —w?r, we can see that the acceleration points

downwards, i.e. opposite to the direction of r i.e. position vector.

Y

.

|

Figure 2.1: Circular Trajectory
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2.2 Motion in Polar Co-ordinates

2.2.1 The polar co-ordinate system

For any vector x on the xy — plane, we can introduce 2 unit vectors (r\u’c cof\sjcon‘c)

e ¢, is the unit vector in the radial direction

® ¢y is the unit vector in the azimuthal direction

Definition 31 (Relation between Cartesian and Polar Co-ordinates).
xr=rcos y=rsinf
Where | r |=17r

Note. Just like basis vectors ¢ and j in Cartesian co-ordinates, e, and ey are orthog-
onal to each other.
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2.2.2 Polar Basis Vectors
Definition 32 (Polar Orthonormal Basis). Unit Vectors

e, and eg

form the orthonormal basis for the The Polar Co-Ordinate System.

Furthermore, the unit vectors e, and ey can be represented using cartesian basis vectors

tand j

As we can see from the diagram:
e, =1cosf + jsind

and
ep = *sinf i + Fcosl j

because e, is orthogonal to ey. Use the case from the diagram:

@z-@'sin@—l—lcos@

Definition 33 (Polar Basis Using Cartesian).

e =icosf + jsind

€p =-isinf + jcos6

Properties of Polar Orthonormal Basis

Theorem 23. Since e, and ¢y are orthogonal,

(scalar product is 0)

CHAPTER 2. NEWTOWNIAN DYNAMICS
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Theorem 24. The cross product (1.30)
e x eg =K

Proof.
e, X eg = (icos + jsind) x (isinf — jcost)

= (cos 6 + sin* )i x j

=k

2.2.3 Derivatives of Polar Orthonormal Basis Vectors
We assume that the angle changes with time, i.e.
0=10(t)
and therefore the polar basis vectors are NOT CONSTANT.
First Derivative
First we will compute the first derivatives €, and €.

1. Computing €,

€ = %(g’cos@—i—isin@)

= —fsin(8)i + O cos(h)j
— 0(—sin(0)i + cos(6)7)

:969

Definition 34 (First derivative of e, ).

e'rzﬁeg

= —0sin(0)i + 6 cos(6);

36 CHAPTER 2. NEWTOWNIAN DYNAMICS



Chapter 1: Newtownian Dynamics

2. Computing €y

€ = %( —sin(f)i + COS(@Z)

= —0cos()i — ésin(Q)Z
= —0(cos(0)i + sin(0);)

:—9 &

Definition 35 (First derivative of e,).

égz—eﬁ

= —fcos(h)i — Osin(h)j

2.2.4 Position Vector in Polar Co-ordinates

Definition 36. In polar co-ordinates, the position vector i.e. the position of a
particle is simply
r=re

Y =¥(cos04 + 5inB) = Yer

2.2.5 Polar Velocity and Acceleration

Velocity

Computing velocity in polar co-ordinates:
. d ( )
r=—|\re,

T odt\ —

=Te +r 0 €y product rule
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Definition 37 (Velocity in Polar co-ordinates).

r=re +rfe

Acceleration

Computing Acceleration in polar co-ordinates:
d
L )
P=- (7”( )

_d(. +Q>
Ta\ T

=re, + 1€ + 'f’é@+ r@@—i— ré@
=re, + f@@ + 7'“0'@ + ré@ — 7“0'2&

= (¥ — 70%)e, + (rf + 270)ey

Definition 38 (Acceleration in Polar co-ordinates).

i = (7 — r0%)e, + (10 + 210)ey

(2.6)

2.7)

2.2.6 Cross Product Between Position and Velocity in Polar

We want to compute the cross product 1.31
rXr
We can compute it as follows

zxz’:zx(f&+rée_g)

= (r X e,) + (1 % 70eg)
= (re, x e,) + (rer x rfeg)

=rr(e, X &) + 7"29'(& + e9)

= 7“29E
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Note. We have used the properties of cross product on cartesian and polar basis
vectors
Definition 39 (Cross Product b/w Position and Velocity in Polar).

rxr=r0k (2.8)

Note. 7 #| - | or rather

2.3 Inertial Frames

The Laws of Physics are the SAME in ALL inertial frames. Inertial frames are frames
of reference which are not accelerating and where Newton’s law of inertia holds.

2.3.1 Convertting between Inertial frames

Consider the following diagram:

Here

e The vector r(t) is the position vector of a particle in the inertial frame O/relative
to 0.

The vector r/(t) is the position vector of the same particle in the inertial frame
O’ /relative to O'.

The vector s(t) represents the shift between the two frames.

’

r(t) =1 (t) +s(t) = r(t) = (t) + ()
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Since we are working with inertial frames, they both must have constant relative
velocity
s = constant > s (1) =0

i.e. the shift acceleration/relative acceleration is zero.
Definition 40 (Inertial Frames). An inertial frame is a frame of reference which is

not accelerating and where Newton’s law of inertia holds.
If we an inertial frame, the relative/shift acceleration is 0

s (t) =0 (*)

and therefore

2.3.2 Gallilean Transformation
We have seen from (x) that to have an inertial frame we had
5(1)=0
And then we can solve this differential equation with respect to t to get
s(t)=a+ut

where u is a constant velocity and a is a shift in origin. This is also known as
Gallilean transformation.

Definition 41 (Gallilean Transformation). A Gallilean Transformation is when the the
shift vector s(t) is the following:

s(t) = a+ ut (2.9)

2.4 Newton’s Laws of Motion

2.4.1 Inertia

Definition 42 (Law of Inertia). Any body which isn’t being acted on by an outside
force stays at rest if it is nitially at rest, or continues to move at a constant velocity
if that’s what it was doing to begin with. i.e.

Every object will remain at rest or in uniform motion in a straight line unless
compelled to change its state by the action of an external force.

2.4.2 Newton’s First Law of Motion

Definition 43 (Newton's First Law). Every body continues in a state of rest or
uniform motion in a right line unless t is compelled to change that state by forces
impressed on it.
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2.4.3 Newton’s Second Law of Motion

Definition 44 (Newton's Second Law). The change of motion is proportional to the
motive force impressed on it and is *made* in the direction of the right line in
which that force was impressed.

Newton’s second law postulates a relation between acceleration (2.3) of the body and the
forces acting on it. Therefore we can reformulate Newon’s second law as follows:

Definition 45 (Newton's Second Law). The net force F on a body of constant mass
causes a body to accelerate. The acceleration ¥ is in the direction of F proportional
to the magnitude of the force and inversely proportional to the mass of the body:

3 [

i

or equivalently
(2.10)

Iy
Il
3

I&:

2.4.4 Newton’s Third Law of Motion

Definition 46 (Newton's Third Law). To every action there is always an equal and
opposite reaction: or the mutual actions of two bodies upon each other are always
equal and directed to contrary parts.

2.5 Equation of Motion

Note. Acceleration is proportional to the net force acting on the body. Therefore,

we can write
ax F

In an inertial frame, a particle moves in such a way that its acceleration (2.3)
is proportional to the sum of all forces acting on it Newton’s Second Law of
Motion

Definition 47 (Equation of Motion). The equation of motion of a particle is the
differential equation that describes the trajectory of the particle in space. In an
inertial frame, the equation of motion is given by

#(t) = = (2.11)

where F' is the net force acting on the particle and m is the mass of the particle.

Also written, &S
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2.5.1 Momentum

Definition 48 (Momentum). The momentum of a particle is the product of its

mass and velocity:
p=mu (2.12)

Note. From (2.12), we can see that the momentum is a vector quantity.

We can generalize the definition of Force usng momentum as follows:

Definition 49 (Newton's Second Law in terms of Momentum). Newton’s second law
(2.10) can be written in terms of momentum as follows:

2.6 Sample Forces

2.6.1 Gravitational Force

Definition 50 (Gravitational Force). The gravitational force between 2 particles of
mass my and mo, situated at r; and 7, (i.e. the force felt by particle 1 because of the
prescence of particle 2) is given by

Gm1m2 o — 1

5
I

[ ri—r2 2 11— r2|

Gmaom, ™ ="

[

_|7"2—7“1 |2 |ﬁ—ﬁ|

where the two forces are equal and opposite in direction:

o =—Fn

Note. The vectors:
" —72 o —1
= - and = -
|1 =72 | |72 =11 |

are unit vectors. That is they give the direction of the gravitational force, and it is
in the direction directed towards each other.

Gravitational Constant

Definition 51 (Gravitational Constant). The gravitational constant G is a con-
stant that is used to quantify the attractive force between two objects with mass.
It is approximately equal to

G =6.674 x 107" m3 kg ! s72
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Gravitational Force Near the Earth’s Surface

Definition 52 (Gravitational Force Near the Earth's Surface). The gravitational force
near the Earth’s surface is given by

F =mg=—mgk

where m is the mass of the object and g is the gravitational acceleration near the

Earth’s surface. The gravitational acceleration near the Earth’s surface is given
by

Gmearth

9= R2

earth

~ 9.8m /s>

Note. Hence near the Earth, Newton’s Equation of Motion (2.11) becomes:
mit = —mgk = i’ = —gK

i.e gravitational acceleration is independent of the mass.

This differential equation can be solved to give:

1
r(t) = ro+ tug — 5t°gk

2.6.2 Lorrentz Force

Definition 53 (Lorrentz Force). Force on a charged particle in an electromagnetic

field (E, B):
B
F=q (E+£' x :)
c

where ¢ is the charge of the particle, E is the electric field, B is the magnetic field,
and c is the speed of light.

Note. Note mass is additive, charge is not.

Notation. Let M = Z?l be the total mass of the system, and m; be the mass of the
1th particle.

2.7 Energy

2.7.1 Kinetic Energy
Consider Newton’s Equation of Motion (2.11):

mit = F
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We multiply both sides by 7 to get:

mi=F=mr-i=1-F

d/1. . : .
= m—(§£-£> =F-r (chain rule)

Kinetic Energy K

Definition 54 (Kinetic Energy). The kinetic energy K of a particle is given by:

1 1
K=gm|r *= gmly ° (2.14)

2.7.2 Work Done

Consider the rate of change of kinetic energy (2.14):

et 1o)== dn(1e1)
dK .
g:mf r

Integrating both sides with respect to time ¢; to t, gives:

to to K
t1 t dt

1

:/ F-7 dt Heve, E = F(x)

Py
[ rea
Py

Note. P, and P, are the positions of the particle at times ¢; and ¢, respectively on a
trajectory.

The last integral is called a line integral and is integrated along the trajectry /curve.

Note

S

\

k=dk = F-¥

T

+
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Definition 55 (Work Done). The work done W by a force F on a particle moving
along a trajectory from P, to P, is given by:
P
W= F-dr=K(t) — K(t) (2.15)

Py

i.e. it is the change in kinetic energy.

2.7.3 Potential Energy

Definition 56 (Conservative Forces). A force F is conservative if it can be written
as the gradient of a scalar function &:

F=-Vo

where V is the gradient operator:

o 0 0
VZ(%@@)

Hence +he force G

_E>¢:_<8_¢.+8®.+6_¢k>

o . 0
E——V@——<—+ +6z or" a_yl 0z~

0 .
Z —
- oxr~ ay‘l
Potential Energy and Conservation

Consider the following calculations:

F=-V0=F-r=-r-Vo

Now by the definition of Kinetic Energy (2.14)
F.i=dK/dt = K, we get the following:

dK . dK :
E——E'Z‘béﬁ——ﬁ'z(@@)
:>dK_ dd hai |
T chain rule

:%(KH@) —0

And therefore Energy is a conserved quantity.

CHAPTER 2. NEWTOWNIAN DYNAMICS 45



Move notes on (dl'n'ndﬁcal Po,aYS

We Know from vector calcalus
VER (A7) 2=2

=

Y="8inB,

Y= 'f(coseéi 461116&2) + 2¢3

As we Saw above,

v =cosOeq + sin0es

$ I: YQ_'Y + 2'_6_.2

The Gmd'n’en{’ oPe‘Ya{'w on, polar s

] e
- \\~

_\Z=<.<2 e +2 e+ .Q_e_s>
A (ij

and |ev and g0 and ez ov’chooona(

and | Y= Yev+ Y0ee + 2ez

Remem ber

ey, €s NOT CONSTANT

€z=¢; const an£




Chapter 1: Newtownian Dynamics

Definition 57 (Conservation of Energy). Energy is a constant of motion

d

E:%<K+<I>>:0

Therefore
EF =K+ ®=CONSTANT

Definition 58 (Potential Energy). The potential energy & is given by:

P
<1>=—/ F-dr (2.16)

2.8 Example Conservative Forces

2.8.1 Gravitational Force Near the Earth’s Surface

As shown in the previous section, the gravitational force near the Earth’s surface is given
by
F'=mg = —mgk

where m is the mass of the object and g is the gravitational acceleration near the

Earth’s surface.
And therefore we can derive the following:

.0 .0 0
—mgk = (l% + ‘la_y + E&) (=mgz)
= —V(mgz)

Therefore we can define the following:

Definition 59 (Gravitational Potential Energy Near the Earth's Surface). The gravita-
tional potential energy @ is given by:

® =mgz (2.17)

Example (Calculating Velocity). A particle is dropped from rest at a height z = h.
Calculate the velocity

Solution:
We know that the particle is dropped from rest, therefore v = 0 at t = 0 at height
z = h Therefore.

1
E:K+<I>:§m|Q|2+mgh:mgh
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At height z = 0, height is 0 so
1 .12 1 .12
E=K+®=cm|i| +mg0=-m|i|
Since Energy is a constant, we get that:

1
mgh:§m|£\2:>2gh:]£|2

=| 7 |= v/2gh

2.8.2 Grayvitational Potential Energy Away from the Earth’s Sur-
face

Consider the following diagram:

m
r
M
The gravitational potential energy is given by:
MG
F=mi=-"""0
|2 ]
_ v ( mMG )
- ||

Definition 60 (Gravitational Potential Away From Earths Surface). The gravitational

potential ® is given by:
mMG

|7 |

o= (2.18)

2.9 Angular Momentum

Definition 61 (Angular Momentum). The angular momentum J of a particle is
given by:
J=rxp=mrxr (2.19)

where 1 is the position vector of the particle, and p is the momentum (2.12) of the
particle.
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2.9.1 Moment of a Force

From the following calculation:

1= dfoned

=mr Xr+mrxrir product rule

=04+mr xr properties of cross product
=mr xr

=rxF Newton’s Equation of Motion (2.11)

I
=

Definition 62 (Moment of a Force). The moment of a force M of a particle is
defined to the rate of change of angular momentum (2.19) is given by:

M=rxF (2.20)

where r is the position vector of the particle, and F' is the force on the particle.

Note. M is also called the torque of the force F.

2.9.2 Conservation of Angular Momentum

Consider a particle moving under the influence of a force F directed towards or away from
the origin.

F=f(r)r

where f(r) is a scalar. Hence calculating the moment of the force F:

= J=0

Hence angular momentum is a conserved quantity.
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Definition 63 (Conservation of Angular Momentum). If a force F is proportional to
r,i.e.

F=f()r

then angular momentum is conserved:

J=0

2.10 Collection of particles

2.10.1 Total Force in a collection of particles

In a discrete system of N particles, of mass m; and positions 7;(t), relative to a chosen
origin O.
The particle ¢ experiences two types of forces:

1. External forces F;*"" maybe due to external fields (e.g. gravitational, electric,

magnetic, etc.) where i € {1... N}

2. Inter-Particle forces Fj; due to the presence of other particles.
Therefore from Newton’s second law, the equation of motion for particle (2.10) 7 is:
Definition 64 (Force on Particle i). For particles ¢ where ¢ € {1... N}, the force on
particle ¢ is given by:

N
mif, =B+ > Fy (2.21)

=1

where Fj; is the force on particle ¢ due to particle j.

Note. Particle 7 does not feel a force from itself, i.e. Fj; = 0.

Due to Newton’s third law, the force on particle j due to particle ¢ is equal and
opposite to the force on particle ¢ due to particle j, i.e.

Fy = —Fy

Hence summing on index ¢ in (2.21) gives:

N N N
SIS SRS o
i=1 =1

i,j=1
——

0 because F;;j=—F};
N
— 0 + E Eext
i=1
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Definition 65 (Total Force). The total force on the system is given by:

N
Eext _ Zﬁext (222>
=1

i.e. the sum of all external forces on the system.

2.10.2 Center of Mass

Definition 66 (Center of Mass). In a discrete system of N particles with masses m;
and position vectors r;, relative to a fixed origin O, the center of mass is defined
as

N
> mgrs
=1
R = ~ (2.23)
> m;
=1

Note. The denominator of (2.23) is the total mass of the system which will be
denoted by

N
M=) "m (2.24)
=1

and hence

N
> m,T;
R= 1=1M (2.25)

Definition 67 (Total External Force using Center of Mass). The total external force
acting on the system is defined as

ME = Ft(oet)al (226)

Note. If total external force is zero, i.e. Ft((ft)al =0, then R = 0 and therefore R

is contant. Hence the center of mass moves with constant velocity.

2.10.3 Total Kinetic Energy in a Collection of Particles

Definition 68 (Total Kinetic Energy). In a discrete system of N particles with mass

m; and position vector r; (t), the total kinetic energy of a collection of particles is

defined as
N

1 )
Kot = Z M | 7, |2 (2.27)

i=1
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Consider the following diagram (R is the center of mass 2.23):

m

L)

center of mass

Set s; =r; — R, then

1 & 1 & .
Ktotzizmi’ﬁ‘zj[(totzgzmﬂﬁ‘i‘ﬁp

i=1 i=1
N

1 . - .
:>Ktot:§Z[mi|E|2+mi2E'ﬂ+mi|ﬂ|z (1)

i=1

Note. From the definition of the center of mass (2.23), we have

N
= MR+ Z m;s;
i=1
and therefore, we get

N

Z m;s; = 0

i=1
and therefore, (1) becomes

1 P | .2 o :
Kot = §M | R | —|—§mi | $i | (\S(AMMR['IW\ conuen‘nm>

N
where M = > m;

=1

Definition 69 (Total Kinetic Energy v2). In a discrete system of N particles with mass
m; and position vector r; (t), the total kinetic energy of a collection of particles is
defined as

1

N
. 1
— 2 . G . 2
Ktot = éM | E | +§ ZE - m; | ﬁ | (228)
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2.10.4 Total Angular Momentum

Consider the following calculations:

N . n
St = Zmzﬂxﬂ (J;:o’c: Z_'L.AEI)
= iz
N
:Zmi(ﬂ+i)x(3+§) sincer; = s; + R

N
-1

Definition 70 (Total Angular Momentum). In a discrete system of N particles with
masses m; and position vectors r;, relative to a fixed origin O, the total angular
momentum of a collection of particles is defined as

N
-1
ltot:MEXE+§;miﬁxﬂ (2.29)

2.10.5 N-body Gravitational System

For N-body Gravitational System with no external forces, moving under mutual grav-
itational forces, we calculate the rate of change of Kinetic Energy (2.14) of the
system.

Note. For a gravitational system

. Gmm ’IT]'—’I"Z'
MY = L M ——

s =1y P =y

3t
£

We can write the rate of change of Kinetic Energy (2.14) of the system as
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Gm;m;
_.Z|7“i—7"j |3 a <ZL Tl)
Jri=1 — —
1#]
1 Gm;m
:22_1:|&_Tj]|3(rl_r]) (ﬁ_r_z> (*)
Remark. alp)
d 9 p
_ — 2 =
@ pP=2p|
and p p
2
fal — Z(p-p)=2
o pl=2 @ p)=2pp
And therefore we get
d|p]
2l — p-p
dlp| B2
7 a1l
Note.
i 1 — 1 2d|n T _(L_L :“—-—‘ __——M'!'
#lumnl lnmnba N T
1 :
| TZ_QP(TZ TJ) '<T’i T_J)
Therefore equation (%) becomes
N
1 d Gm;m
Kot = = S
tot 22dt|n~—r] |
Jii=1 — —
i#]
N
B Z d Gm;m; ()
— dt|r; —r; |
1<J —

Since ¢ < j is already half the number of terms in the sum.
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And using the summation properties for derivatives (xx) becomes

. d Gm;m;
Ko = E Sl
bt = dt|n—rj|

Therefore we get

N
Gm;m; dK,w d Gm;m;

Ko, §j Gman; oy Mo 4 g Gmany -,

T | ri— | dt dti<j|7“,—ﬁ|

That is a Total Energy is conserved

Definition 71 (Total Energy in N-body system). The total energy E in an N-body
gravity system is

Gmlm]
E = Kiot — Z o] (2.30)
1<j L -7
or using (2.28), we get
N
1 . 1 ) Gm;m
B= MIEP 43 m &l - Z‘r_r”, (2:31)
i=1 1<J g _J

Definition 72 (Potential Energy in N-body gravitational system). The term

Gmym;
Mty (2.32)
= | ri—j ]

is the total gravitational potential energy expressed as a sum over all pairs of
particles.
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2.10.6 A Virial Theorem

Define the following:
|
=52 milr’]
i—1

Then we get the following for the derivatives
D= Z T T chain rule
and the second derivative is (from the product rule)
D=Zm__+2m__ (%)
i=1 i=1
Then therefore we can rewrite the equation (x) using definition of (2.14)

D= 2K + ) mits - 7
i=1
Virial Theorem on Gravity
Gravitational Force of Attraction is defined as

mr; =
= =y Pl

And therefore substituting this into the second derivative D we get the following:

T

Gm;m ry —
D =2K J = —
“”Z” Zm—mm—m
l

Gmimj

1
= 2Ktot + 5 Z(ﬁ — T’]) .

—(r; —rj)
—~= P =
:2Ktot+(b

= Kot + Kior + @

=D=Ku+ _E
~—~

conserved
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Define average Kinetic Energy
Definition 73 (Average Kinetic Energy).

1 T
< Ktot >= —/ Ktotdt (233)
T Jo

Suppose the quantity R does not change, we find that
EF=—<Kiy> or 2<Kipp>=—< Vi >

This fact was the basis of an analysis of the Coma cluster of galaxies by Zwicky (‘On
the Masses of Nebulae and of Clusters of Nebulae’, F Zwicky, Astrophysical Journal, vol.
86 (1937) 217), which demonstrated that there should be some kind of ‘dark matter’ to
account for observation. So far, ‘dark matter’ has not been identified directly though there
are other, independent, indications that it should exist and many theories as to what it
might be. (For example, see ‘Particle dark matter: evidence, candidates and constraints’,
G Bertone, D Hooper, J Silk, Physics Reports 405 (2005) 279).

2.11 Two-Body Gravitational System

Consider the following diagram

mr; = Gm1m2| . r_ (G1)
Ty —T1
. -
mr, = Gm1m2ﬁ5 (G2)

Since the direction vectors are in opposite direction:
M7y + mary = 0 :>(M1+ my) R = 0

wheve M=mgtm, MR = m Y, + MY,
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Consider the following diagram

ma

Put ry =R+ s and ry = R+ s

We get a second order differential equation

GMr
S n r o __ T
- (a4 ma) s BE
Note.
mol — Mol
§ = ————— §1 = —————
- my + Mo - mi1 + mo
From an earlier result:
1 1 Gm1m2
E=-my|i |2 4=mg |y |} ——————
1 . i 1 . . Gmim
=-my | R+ [ +-mo | R+ s, |2——12
2 - 2 = e
1 i . - G
L gy met L e, i [P Gumg
2 my + Mo 2 my + ma |ﬂ_2|
1 1 mime Gm1m2
m m R‘ —
= g(mi+m, ‘ +2m1+m2’ ) [

1) (2)
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520
In (*G), we have the following: /

1. (1) is conserved since center of mass acceleration is constant and hence velocity is
constant and therefore the Energy associated with COM is constant

2. (2) is nothing but Kinetic Energy + Potential Energy which is constant and hence
conserved.

and therefore Energy in a 2 body gravitational system is conserved

2.11.1 Angular Momentum in a 2-body gravitational system
By the definition of Angular Momentum (2.19)

l:mlrl ><T:2+m27n2><7:2

= my(R+ 51) X (R4 81) + ma(R + s3) X (R + &)

= (ma +ma)(B X R) +mys; X s+ masy X 8

mimes

" = (my +mg)R X R+ rX T by substituting s; and s,

m1+m2

$R:0 D RAR=0 s Jmo
le o(w\o same Ving

and again these are both separately conserved as shown before in conservation of an-
gular momentum, since we the force is proportional to r, i.e.

rocr

angular momentum is conserved

Remark. In the end, we do not need to care about the center of mass (2.23) motion
since as it is a constant velocity motion and hence it is conserved and has no
contribution to angular momentum and energy of the system.

2.11.2 Reduced set of equations ignoring R

Ignoring R, the system of equations gets reduced to

G
PR (m1+m2)fr
- rf?
5—1 myms 172 Gmims
S 2my+my |7
L=
my + mo
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CS

Here both L and ¢ are constants.

Remark. Note that L is conserved and perpendicular to r and 7 and therefore we
can use polar co-ordinates.

L

N

Plane perpendicular to L

2.11.3 Solving in Polar Co-ordinates

Let e
M = d -
(my + my) an 1 T

Then the required equations become

. GMr
r=—
N r[3
c 1 | |2 Gm1m2
= — T —_
2! ]
L=prxr

Note.
L-r=0and L-7=0

So the motion is orthogonal to L

Solving in polar co-ordinates to describe r,

r= |f|6r rey
Then as seen before the derivatives of r are:

T = re, + rleg

i = (i — 10%)e, + (2rf + r0)ey
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Therefore the angular momentum can be seen as

L =prxr

= pre, X (7e, +reg)
= urife, x ey
And therefore calculating the magnitude of Angular Momentum (2.19),

L] = pr®6le, x e

; LT .
= ur’fle,||eqg| sin 5 orthonormal basis vectors

20

= |L| = CONSTANT = ur?f

It is convention to represent

20 = h

and hence we get:

w0 = ph =|r*0 = h

Furthermore, calculating the magnitude of velocity (2.2),
. h?

7* =i+ 07 = 7+ —

”

and substituting this in the equation for €, we get

1 1Luh? G
8:_7;2_‘__# _ Umymy

ot 2 7r? roo
effective?otential
Y =YVey ‘='—"> @icj
Solving the Equation of Motion Polar h
. . . D GA ey
The equation of motion for this is "hT -
GM . GM
P=——e = (F—rt’)e, = ———
2 Sr
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Note (Nice Trick for solving the differential equation). Put
1
r=- u=wu(f) and 6 = 0(t)

and therefore finding the first and second derivatives:

1.

d*u
2.2
=
Therefore the equation of motion becomes
d*u d*u GM
2 2.3 _ 2 _
—hu e —h*u’ = —-GMu :>W+U— 2

. Therefore we need to solve this homogeneous second order differential equation

d?u B GM

W +u = h2 (2'34)
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ladl

A6

Font Uem caleulus
Solving (2.34) using Ansatz u = e

GM

u= Acos(f — 0y) + 2

Or more conviently, we can write

r:1:>u:1:GM(1+ecos(9—00)) (*h)

U r h?

where e is the eccentricity of the orbit and 6, is the true anomaly.

Checking if Energy is conserved 9
o L
-4 ¥ (G silo-a)
+ _i Mkz<%> (1+2¢ cos(6-8,) + ezcosl(e-@o»
— Gt QK”_:‘ (14 c605(9’3o>>

- (Crﬁ/\)l Z_4) = C(ONSTANT (x¢)
= gL pl&t) (&1)

—

h

Av\o\ ’choﬂe-(eﬂe we Caq SAO eqmoo i’s (,or\s{'aqjc

<cov\’c€v\,uccl o4 next ?aoe)

(riven, (¢A),
2.

Y= % Y 6:)'\,
|+ecoSO

I - e P o
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S IS whe '((oL at s wheq pbfect (§

‘::> ZQ-= IGMm (l—_ﬁ') (\/ u\sw\e fkem SP'MTC LN
3

2a a?‘

i

Grodient of potential
V0 =-GuM 4 v=a
)
Spherical Polars
The components of 1 ane | K e unft veckss

Y=Y (5246@54)1 + &Er\eszw"} + (,056_!5_) -
X U Z Od
Calculating volume element: 4V W
Think of * tnfeqstesimal cl\anoes of ¥,0 and ¢ 15
or.
SY dr, A do , 21 d¢ “ 56
ah 36 ¢ //) /
X )y 3L d¢
37 of




¥ we want to werk out ‘volume 0Uupied bo above

dx. @Lxg_x_> de do do | & Eatple scalan podect
oY \99 9 (xs1)

Eciua{'fwb (*51) con, be calculated bo

oY , (X X oY L
~r (89 a¢> dv de doe =

o 0
5—9. 3‘% £/ Jacobian,

oX
oY

Mmathix
X 94 3z
56 956 96 | dvdods
EN
of

oA 3z
3 9

I

SinBesp  sinesing  cosd

fcosecos¢ YCo&GsM -5 0

—fsi.r\esit\¢ Ysi,necqsfp 0
= _Ysinasil(\(P (—YSI.,I\B) T YS(J\@ CO~S¢ (_ Y(’O‘S ¢)

= 7500 dv do dg

= ﬁ@l—— aw_r> drdo do = Tsinb dvded

Bow\a\ahv cond tiong ')hZO
1) 046 ¢T
304 PR

2.12 Gravitational Potential Revisited (contd.)
m(e)

Constd biect that t
()t LG oy

Let - m(8) be MAsS Jev\so{‘v

Total Vo‘vw\(

*dV be volume element
Vv

* Total Vo'uw\e, SRV




Note! M(§> G the ‘mass den\s?iv at 5 helative Eo R the centen of wosc.
Theaefose the Ohav'c”cahoqaﬁ pofcvd’aﬂ

(xpy)
§= Gm JL(:)_ AV

|A-s|

Considen 11| to be wmuch of\ea{ejz thaq the scale of V (l'f‘»\SD Thenefese

1 :|,-—6V ZL-SV 5V> & dimensiona
lz-s] o] (if\> oDk (\l‘-\> (ano«"\;e;\ncSQD
Note: EUIo_ﬁ Sentes

$locth) = $6) + ) +LRF G -

Heqe et 3D
e X=Y

*h= -5 E'\fh(’-"\ef\{') scalan ?hoduc{'

* hxdeatvative & qcnement. ohadunl'
Thenefote u\su&uo tato u\l'eoha,q (s pi)
?&(I)-‘-CMUA_MV aa(l >J5 POF RN "W J 5,546 4y

[ ot 2 9,9

%
useo\ cw\sl-w\ ﬂo\"’“
{—0’1 v dfadcu\{: -Fo‘n

as MR =JM i) _R_'\-_S) Av | Stmzlen +o dlSUle{'(

"
a~
=
=

1) +OL/\/ v(‘> O écase phoof :
: ~ 3) oV = gSt =
<\Y\><m6l> 31«°‘Méa5.,r<é>«iv ~ J 2pe)d 2 M

\'4

Justifies oun assumptions wheq l1]>>0 (VU\U b‘h)



2.13 Rigid Bodies

This % an tdealszation, of in’cm—PMJc?cIe ferces Such as to maintain nfoid shape of boda
Considen a collection of ?M{-tcles We have :

|he- h3| & constant, Since body % hUoJ, the locattons o-F)
FM{:Lc[es do no Loy\de
= lst-s§| % constont

[$i] T conshont MM Yi=R+S;

Funthen, assume the inten-panticle forces have the Phoymlv

F dinection (ol
Fy o %-Y =gz | & Faﬁ.ﬁis”\ nection, g 2

Total Kinetic Energy and Angular Momentum

usmo tkaé
We caq calcalate the total Kinektc eneAgy k\/ R4

S¢

1 1 {* _ 4 M(R ‘ :
: Zi nill = L 8 R+ ZM“‘S

1=t

uSlelohlv ca cu[al-‘énd Total Ar\odah Momentum
use that
. N . |e/
thzﬁ:m;xawg = MRXR + § ' Mo S X§s .= R+S¢
=1 v=1
Now I8:] &5 Fixed but the hooo( boo\o can, hotate 0 caq, have @ \Ie[oc?('v
associated with °£'
Thene§me 8 & Oe'\ffla“o tise dependont.
Lf,t (\/ b"Me ACPC'\AOI\{'
Q"(t') \S (‘7) f, 5"“4 i1 space (Eif\skebl\'s f\\o{al't.om)
(o)

Q(f')f\/-leeol he| ative b h: o boJU
coqs’ca«’cs it Cha

e of axes:
Chan Md the to I)Q, hoﬂL the bod u\ MO!’coll Le. Ehe
0Algin" i on the bodo tstead ug ot a disfance.

o Whea, efain on boJU the Sia will be cnetont
but the um{' vecters hol'a{'thl\ande hence time depend ant

* Whea oxigin, awagy vt veckos conshonk, Sia i moving




Thehefore the two axes
* one on Movfzw bodd (¢a 1)
v othen of o fixed ot o distonce (xa2)
The axes (¥a1) and (%02) are tnanslabed and notobed from each other.

We considen the notelion, we can S yakei

o Sl
(o) | ed®)=Ry(te” | 5 [RR=4, detR)=L
Then, diﬁmenﬁa{fnd With fespect to Hme

Ye exphesSco\ Sixed ones usi ﬁ
un{ ixed oV\es onw/ﬁ 'U( 03)

L.a.(t) K (*) Q(O) = 2 ab(t) K:O(l')_e_c('(?) L> hkma trans ose

Note:
=4 = 4 (&) =0 = R&" +RR"=0
: , T
= [ :-(RRT>T [CA\B) = E,TAT]
This means thet RR % ankisymmetnic  hence
. T _ o
(RRT) = € w(t) | (xah)

EX(LMP‘C ca\cu[a{t:\a Yofa&oll Ma‘c'r'l’x

et 0sf  sin® O

0 0 1
7 65§ 6ws6 0 (0s8 -gin6 0
RR = feose —Bsine 0 sing (o806 0
0 0 0 0 0 t

. wd
:Qenof
-9 0 O
0 0 0



’n'\o\e{—o‘.e S0 fon, we have found that \Su‘)sjc‘u’{ulfv (*‘0‘{) ®nto (akas)
&L(t)= ¢ u)d(l:)_g_ @) | (x05)
ad ¢

Heace . )
O 6 (t)
(o)

=S, zadwd(l:)_g_c((-) <\Y€of¢i¢h to €40 and ¢
= wXs; wXs; =wyeylt) xswf )ea(t>
X = wi(t) e, &) 5,°
_-§ é.c(b) = WX SE daf (e
Calculating Total Kinetic Energy
As Seeq above, !
e 2
= LMIR[ +4 mpls]
0 2_ /
=1

Tk%e-[ose Fotal kiy\et,}, e'\tfw (3 (MOMCO\L 04 nestia ('Cqso‘\)

CILERY m.(ls\(sab 5059 ) wo

?

15 U called the moment of inedia tersen.




Thewfne in the end we Je-f'u’qe the ‘inentia {:cvlso‘\(«“)
T, ZM (|6a| (S S.(o) (0) N'ﬂ\fs ls o constant mabadx

INote: The inefia feqsor needs £o be defined fon each Iuoio\ Bodv

INote: The inentia tensen & sow\mebuc«f | Tap=Ly, f\/Tke cmla'ues phincipal momest
{'ca. OAL heﬂ}

Note: We can Lkoose 60.(5) to be eﬁ%oﬁmaf e e'\,\lecjco‘\.s Iab
Her\cc T [ Qa d«. om( MA'['A:)( Cal ed Qqa?a‘ McS) (OY rmapa' Momer\%s
- ao Pf.f\ul:ia
Calculating Total Angular Momentum

Aﬂou\w\ Moentum as seen above

Tt = M MRXR + §’ My Si X85

To make \scmPl;{sCal-cor\ easw\,
Tu= MRXR L, |L=>" msiddy

As seeq fnow\ the Ca\cv«\aho/\s above ,

E”
3
o-.
X
X
&

So ca‘cu[a’cina the o™ couroqu\{- of L in (xe2) : L,
N
- (@, (o o) (o) () (0) ( ) (o
L‘*'Z (6 'S"bow ( ‘S ) _ (t: ib 6ac. s": "‘-)) ¢
l—‘ %\ 9 -L-_-‘
|sil” 3-8

=T

ac h)c

::> La= Io«c,wc (st = ._[:= Lata

b Total Arvu.[ah Momentum usiag lnentia Tenset



Rigid Body Motion Near Earth Surface : (—Mia'&>

Change in Angular Momentum

MR
Consider how J ckandg_s \/N\/\/\K\/
T=3 wonnti = > m, axlgy
=1 1=1
aEng

Also . N .
J= MRXR 4+ L ; —Z_\m.gxso
=-HgRRE AL (s M- P = nE =gt )
=> _Mdgx’i =-M EX£ +L (\Sul)s‘l'c“u{'uo (’*ﬂﬂ\l

0
='> _L:O (El}mhor\s MMU\J compof\u\{'s of >

Calm\«l:&u L
Frow, (463) we have that . tine independant
L= g'._m(e):[“bm.)b = L= LOT, 0.+ 5T, 0,
= I= a®T (W, & A”A.sff_)Iabws
S L= &[T, + iw;"’a i;ul,]
Siqee fnom above, (T-F 1o external forces ov in near eavth d’{av?’t‘o)
L2023 0 = e [T, + 6T

[n comfoqcn{: Jrow, hs becones

¢ & 0 free index and
Iob":’b"' €. JwAI“wa =0 il tkm{m che have & sefs of

CIVA(A wAS




Choose axes &o that L s a d‘taoov\al w\cl-h'fx.'rhw}m ] toms of Ph'u\dral oxes ;

T a=b=1
(pvi,nt{,pal moments of Inerbia) il
[/\( I)_z_ a=b=2
Ty T,. a=b=3
a3 G=b=
C 'FYQL ?’\dex O a# b a=?, d=3 az3 d=2
~~—— AT
1) ¢=1, I w ,t 3 d‘*’AI ‘05 * Iw i Iu_ 2t &3\7_ 7.]:33“3

= Logmy T AT gy = Y

=> 1111:,1-(1’-1’]:.3)101”3 =0 (*E 1)

(9 c=2 EULERS
S T,,0, - (T, T,) % = 0 EQUATIONS

22 2
() ¢=3 (e€2)
= T~ <I11' Iz.z) w, =0 | ()

Constants of Motion

(a) w(*g1)+uuz)+w(*€) Iww-I-I ow+]'_ ww =0
(111”1+I w + I e ) = constant

() T,, o, (+ED) +T 0 kE2) + T y(4EY)= Iilw1w1+l o, + T 2w, =0

> 1?1_1‘“’1+ I w + I = wqstant



EX«MP[ct Thene & a solubton where
020,20 | =0 | 0, i coqefant

ls 3 stable ?
PuHT;f\ F{- ¢ {—
_ P P
f wEN,e , wEe 0= ()41,

So .
Loy ~(Ty L), r +L pd= 0

and funthen 1\ & second erden small. (4,10, smalt)
t
(Iii?nj_- (Izz—Iss>ﬂq3> ef =0

(IzzP'\,_’ (In ’Iu)ﬂ ’\,} e‘* = ()

s, Iil P "(Iz')_’];)ﬂ U ] <O >
_(Iss_Ij.i)«Q Iu? iy 2 O
:> i (Iu P -(E,_-IQ_Q ~ 0 ( ) \L’ian{' non-£vivial

Solutions
'(Is.f I11>—Q— T uf

=> I.T Pz = _0.2 (Izz'I33> (I\S& ’I11>

11722

t
Skable s theq e want F"(O (.So ¢! does ot cxPloole)

Skable = p<0 = LT, LT, «

Izz<I33 ) I.ss>111

Unstable = P9'>0 = Izz>133 >IiL ]

OhoNEI\O So‘u‘lio.\l 111>I‘33 g IZ‘I_



Exouvlplc.'. Wheq 2 of the moment of inentia ane the same.
Suppose I:L].: Izz (365 unifoam colfrwlo;)
T‘wxc—)(m

(«E3) => f_l;s%'-‘o = W; mqs’mn{—, let =12
(k) = T & 4 (T,-T,)w, 220

(se) = Ty o, + (T,-T,)u, N =0

So we Can saa that

(‘kdi) t;)lz’A-sz_ where A -’-:[3; —Iﬂ
(-kdl) ,;)2_: A,O_k)i
6o|v'm0 the pairt o-‘: A?-He).ml'fal ec‘ua','ioqs (’kdi) and (*de)

w1'~' —A.Q.wl = Eolz -A.I),wz_

Simp le hoamonic osséloben

:% .';)1: _(A_Q_)zl,.)lc/ PYOHCW\
Shy= AclBalt + binf0lt]

dwlu,ln, 3
W=l w
Ao

Examples Computing Moments of Inertia
i) Untfoum, mass deqsz‘cv .spko\ef Mass deqs#v k, Radius a
Total mags: M= !\%m",u
In our qobes above, moment of Inentia feqsey was done

using Sums because we wene Concemned with disce
.Svs{— 6. Now,we have a confintum, So use Integrals

Iab:J (‘é |2Sab - 'S"‘%)}'L 4V
Jrkerc

Take oRigin of co-crdinates froy COM and wse polor co-ondinetes
§= Vst

62_2 YSZ’\G 5&'\¢
63 = Y(oSO

ond v=1sl



( ) QaQ . 1Y n

6,7 0 I=—f«rdJa9&eJd LTI

42 " M Y | Sin ¢ Y S %&\6% OY‘{;L'OdO"“I jﬁw\cl-wns
0 0 0 > m-['eo'ral ¢

And s'iq,';lado, we can  show that
I-L =T, =

12 23

Ca‘w\a’:ind a dmooml elemn%

a T 2T

_ 2 4 2.2 /
I&b— ,Mj Y ATJ ScrLOJeJo‘ﬁ (w) /
0 0 0 s>
§~a T
= amp[ L ]o Js;.fe do
o
t

= 2Tma’ i

) 3
= m2a

— - 2 —_ -
= I“- M_g;o. ’Izz‘In

u) Constant dcqszlra chl'anoulwf slab of matental: mass deqsn@o M wcA‘c\Lkh 24, breadth Im
Kec{—anﬂulm slab of constant Ae,\sztv am N P o

M n

2 2 2
T’ /Afds PS JJSJ <SAL(51+51+55'5¢5&>}
LAY |

Foﬁcxamplc Ca|cu|ajcin01 8
}LJ ds st J ds, ('515>
-M -N\
- w5 0T T
&Y b 0L,

-1



Ca‘cu(ahno a Amooqa\ lesent

1= /’\(“SJ"SI\AS <6+5>

L\

= pt(1[$] +2n[E])

= pd(2a2ed 4 222)

= &Klmm(mz-in,?') r A(Mz+'€.>
K3 3

iil) Momeat of lnertia of another point shifted avay from centen of mass
Relative to F,
8= si-t

L ZM( lScLS - S5u)
'— Z_r«;( léa-m - (5-t) (5i-8),)
E Z_Mu(lsu‘é -$ s‘b> M M‘Sa[, {a{‘) ( No{c’:lssikiwa Be,fn)

= ab+M|16 t.t)

= | Ly Tyt M(‘ﬂ%a{ JC“J‘*)




3. Lagrangian Dynamics

3.1 Calculus of Variations
Mol'i.valioq'l Thying to find the shostest dictance/path betueen 2 pinds.
00 i i
stk paths  are called GeoolesicS.

Consider o plane. The fend{'k of P«'H\ A to B: Lab Pa{—k
Xg Y %
y Lafflﬂgi dx | //
XA /
Sg
$ = | ([dx\* 2
) L[ LRI
A

We need to see the Minimun, of the tntﬁ«ci s the choviest PaH\
Tmica\lo o & swrace (L:ke a.spkm) the element of |en0’rk a‘ot\(j a PaH\ will be

[ D@ pl (i) ds

4

Cor\s‘c’deh?no s{'ajcior\aho Potnls 01[ the 1,uanm-ies de-ﬁr\ed bd 'Er\‘hohals

Xg
F[U] =f -5-(%3,6') dx ) F[U] % called the :}w\cl?oqaf
X




3.2 Euler-Lagrange Equations

Constden cl\ano'a’na d(x)"'éo )

UM — &(x) + 50(36)
and then, we look at A

$oo, 48y 5 g +85) = $ugg) +4oa++6034 i S0

A (‘A’{W

Mu“:i Miau = ( 1 )+ 6 a":"' d __'f
Taalovf's tho s d"o o\X[ ] 0u<a )

- (xw)n%a[gz; ddx<ad>]+ dix[d%'}*
= ,06 +60[30 dx(ggﬂ . _0%2[60_%{3,]_‘_

%F[Uw(,}{@&m)uo[% ﬁ@ﬂ”[aadf] ) "

A

AN
)X

8 X
- ] o e
U +f80 [90 a%((v?d >) ! [60 &0 Xa - Vk%l:v ordey

60(1'0:0 % 5d(xﬁ)=0

We con &ao that F[U] s s{'a{-?oqaho when, ( )
funckio is = | o _ d( > =0 | (KE-L
Statisnary uh o _d[H\|dx =0 oy  dX\ 9y’
1‘(’(“5{' o?:iq "\'ISO I 0[90 dx 9(] >] 0 g
x

A } (60 T3 owm"(aip
Eules - Ladvranag Elj,MH%

() ) s specidied and Euler-Logvame equatio
(s '23[0 an, e'i«‘t“hi'foh'a(x R it/ s

Example: Hay, 0') =15y
3 =0=9f 2 Euler- Lnomnoe Eqn, Says

GU e Jé( (3%,5:> -0 = U' % col\&{an{'



Minimum Point of Euler-Lagrange Equations
Aaacr\ uSw\O Mu\l: \Janable ﬁo(m(s H\conn\, '(5\‘51)

8oy it (464) = Fx0) + syaf + 6y 2f + l5 Q_£+6 ;z£_+|5'za“4+...
R 03y 5 2 TEE

e
£8%) 15
-1°(x.an)+5n_8 +533§+£50 x d 5’353 - 50 M(ﬁ)
e S
= +(x,3,5)+5u_5 +6@3-§ +14 [_536_2 ﬁ‘(%au )J %)GUH ......
(x1) (au,)

Provided (*1) and (‘m 1s Pos&cvc, we Ae{’ (18 wqm\wv\ .s{'ajnoqar(\’ Fom{'

So {ov @ minimum, €va|ua{1& 6olu{wv\, o E-L ecv\ )

el

i) 8% >0
9y "

E)(amplzi Check i for the shovtest Pa“\ between, 2 Po?an on & P‘m\a
3.3 Remarks
() It 'F(JC,(], U') (s independent o{a then,

= of s wnstant
3y’
(6) ‘g\ oy y') s independent: of x i.e. $(x,4,9") depend 0n|0 on X V?ﬁa % ond ')
ey,

8f=0 no expliat
9% dependaqee on x



Then, Z\/Mu“:i\IMTAHC chain vule

3y 9y o\)(_(-j'
H(2-42) + 4(52)
(ke-L) =0

Whey, 4 sodisfies (4E-L) Euler Laoi\andc Ezv;\ahor\s, thea

bedlvz) = A(-0g) =0

':'> f- v’_@f_ = constant
ao’
() Theve could be several U'S ( Bar s a&) and the Junctional would be

b
F[‘ob---poq] ""J‘F(x,ai, "'76*}&1) :2]4,,) dx

I this case, a sé&iowa point corvesponds fo a seb of (¥E-L) Eulcr—Ladfande

Equati
quations _Q_f_-—o\.t?_‘f_=0 Vic{i,...,ld}
oY ]7(60';,

Note: I no explicit dependance on, x, then,
o4 =0
oR
and thevefore

=0 N N
AR > O

Jd

N N
:’> i Jf- ,{.‘?i,> :O — IR i_?_f_, :coy\s{'an{'
dx( Z“U g di Z‘U ik




d) The fuqckional could be defined bd a kio)\ev dimensional ?n{-zofaf.
Define funclion, M(I,ﬁ) , and the ;}m\cﬁor\al S

Flu] = J-[—(x,(‘j,u, Uy 5 W) da
> A

9% ou
ax an

The Eu\tf-l.aofande ettua{'i.or\, i this case s

§u =0
of _o9f 93f=-0 (1( E—L?_> bow\o\a:g
oW IX Juy aa au.n

Exaw\plc: §=ug+u

AL Ul-
I = | () ey
D

T hen,

Eu\cY-Laom\ae eqn, s

-9 (D-le) -2 (Zi'U> = -)_(uxx-uuo): 0

X &O

2D - LaP’acc czVL.

3.4 Principle of Least Action

Suppose & dynamicol system & desatbed by a set ~ordinates ( genenalized, could be
au‘;&)( oj: Cami—;}frf Co-0 sdgrt;{'c;j P:lif c:-oro(u(a{—cs :.{.c)o{: wk(;:l\oan'\ c:ﬂda i

3, 40, .., 4,0

Then, we also have o set of ﬂev\emlizeo( velocities /\/> So we have 2N vaviables
3,6, 40, ..., 4.0

ﬁjd idea The Sas{-ew\ mMoves ¢4 devdops in Hime so that the action & .S{'a{'fowno e minma

Action: The ‘actton, A & a funchionad
Alg,,%,--9] = f AR AR IR Y

Y

L U called the Laa'rarﬂim,.



The task fs to choose the Lagvangian in such a way that the minimum of the ackion cwrespwds
to the Neu{-osﬁavh wakions of wtion for the sas%mp expressed fq terms of the deqehaltzeal
co—owitq,a{'es and thewy }efi\m{'{ves .

Fon the Laomviaq, 1, we have a colleckion of (XE-L) Edu-Laﬂmnde Equations,

91 _dfst\_p 5 i=1,2,... N (xE-L3)
4, dt<3"u>-o )

GeqMa(?zed Mow\enjfuwt

D e aer\vml‘c’zed W\W\emLqu P: assocfated with the Oer\u\a‘iuc{ (,o—owrd?vla{'c % bd
set ina

p;= 24

——

94,

Tk(, deo\u\a[tst mov\en{uw\, CO'\JMGA‘[’G {;o CO-OYA:I\A‘['C q,; can, Be 5uhs{'€{—u{'ed ‘{,‘/ (4( E—LJ),

$=4(n)

INofe: Neithen the 9. 6 p: need not be achal/\syec‘?{tc comfoqen{:s of o vecton. Thed are

Oenmalised co-ovdinates and momeata.
Remarks
a) H the Laamai’av\, does not exy(?c}’HU on, a dcvw\ahza! co-ovdinate 4, o then

%%:J)=é;ﬁ(%ﬁg=o

= %_(Pk) =0

= P, = CONSTANT

Theefose tF this hoppens, the co—onhq&e & tnorable and the assoctated cv\u\aliteal momentumt
Py &s consenved. IqPPJon;(e cincumstances, ;ﬁse lﬂ? szld useful COqshaiano{ motion.

B) LIf the Ladmnd'w\ does ot depend exp(n‘u’Ho on, 1, then,

0420
3t

ond therefore



ad oo multivariable
Zq“’g . T Zﬁ«aq, chain Tule

St Slal)- )

L
ool
SHlEAE) T 40)
Eulu Lav ¢ eqn
(xELs

i‘?:‘:f 4i 24 o

Thevefore we dc% thot
i1 =4 Z“"‘QL = 4(2-3 L) =0

dt dt

o1 91*

Note: The consevved quanti
i (1/1’ :%uqvu :1) —Z“, 3;" T

is Called the Jacobi funckion and is often %M, to the total consevved ey

3.5 Examples
Example 1: 1D System

Porticle of mass m w\ovino alono the %-axis

®z

® \ .x({')

@)
6u56¢c{‘ b a -foﬂe Oi’vem bn o Po{'m{'lal \l(i)

- dV(x)
dX



A suskable Ladrandiar\ is
L) = L ma - V()

To cheek, we .sampln calealate the Euler-Laaane equation, for X
dk=mx , 3L=_dV

ox ax  dx
bo find from (KE-L3)
Al A(ai) — _dv _ d(mx)
oxX  dtlJx dx  dt
= _dV _mx=0
dx

Here \ does not
:> W]x: - %_\_/ (A V4 ua{ioq of mOHorL, de‘)enA of\-['
X

s

Note: The Laavanaim depends o x(t) and () but o expliat dependance on time.
This means Bo vemark 3.4 ) !

24=0 = 394 -4 = CONSTANT

at X

= 3(ux) - <_%_mf-\/(x>) = (ONSTANT
= mx* —_J-_rvla'c7'+ V(%) = CONSTANT

% Lm “4v(x) = CONSTANT = E

AV

&\
K'u\cl"sc er\ef(m Pcr['er\{'ml er\eﬁd Total Er\efd d

Note: T# s iw\Poﬂ'an{' Yo obsexve that
L) = ;ZL_qaz’-—v(x} = KE-PE

In de'l,eﬂaf, we can, sao {hat
L= KE-PE | (x#1)




Example 2: A Simple Pendulum

COI\SMM the ("°”°"):“0 diadmw[ (Pev[duluwl mc Mass vvo

{
I7<

0 =olt)

The ev\Au‘uw\ B o panticle of mass m s constraned to wove iq a plane with
W\jl’ Rlec%ors k aqd 1 at the CV\A o«F a [;0[\-[— Yod d " ptan

of length A

=N “0 "\ Assume inextensible
e assume 5t has O

Newton' eqyual-iovl of motion is thevefore

mass

My = """0.‘5 +1 (I Is PM{' of the Solu{'iom)
The pasition Y (t), VeIoc's’\Ld 7(t) and acelevation ¥(t) i given l’U

Y(t)=LsinBi - LeosOk = ¥(+) = £6(cos6i + sin0k)

= ()= [8 (cos oL + stq@).ls - lé‘(szqag- (oS 95)

A 1a0mv\0‘£ar\, ot this sosjcew\ tnvolves ordo K-E and PE.
« The Kinebtc qurdo K-E.

KE=1mtl® =
2

K.E=1mf &
2

* The Potentiol Er\evov PE %

V(G):Moz > v(e) = —w\olcose

Therefove, we can whalte the Laom.vzm as

1(6, 6) =K.E-P.E = _i_w\lzéz‘l— Mofcose



Msino this Laormoian, Euler- Laofav\ﬂe Ec;ua{'iovl, (xe-L3) for 6 s

d = - . - 25)=
%-ﬁ@) 0 = Moﬂsq@ ait(ml é)

= f- -0 sind
Fon szmplc kahw\oq;c »to‘ci.om, 0 G Gw\aa = sin6 = 6/'

6z -306
This formulation, allows a calenlation of 6 d?mﬁv.
Moveover, the L’O””Oz"" hos no specific dependance o t, so0 bo stmj laf afouw\enjcs,
K4y = _!Z_Ml?'éz— MOXCose = (ONSTANT = E

Example 3: Particle in a Plane

Considen & panticle of mass m moving on a. plane thet s Y
subJecf to a fovee with po{'erd'i.a( V(Y)6 dfﬂd’eg a{'}uaﬂk the

Ohigin. e Yefevence line
U.\stfo plane polan co-ordinates: il m
he-Ter > £=-(Yex +18e)
> lif = (#+ )
Thevefore the Kinetic Enev(m is
K.E= -%(w‘r’vr %éz)

Then, the Laa'mndzal\, will be
Anh,6,8) = K-V
(426 - V(1)

|
2
Notice that the Laamr\aiar\, does not depend on the co-ovdinate 6, and so
Pe= .9_;14-': W[Yzé = cor\sfanf (Yew\afk Sk a)
06



Also the Euley- Lad'mnac -fov B

SN

mnjmr\ mtleyendanjf of ),

)"

= CONSTANT

(V) IQJ f\
7L

Q
|r'-

.___?

= MY 6 = CONSTANT

O

= F=Mk=LON$TAI\n_, ?u{' Yo=h

n

Also the Euley- Ladmnde cqvuahom Jor v is

ol 4(&1) my6> dy MY =0 = MY - M6 Ry
oY dt\ov dv

Hence Pu’f‘civ\o vo=h as Pvevzouslu, the equm@{m for ¥ T
MY = mh _ 4V

¢ dr
Furthermove the iaam\dzm does vot depend expl?c:HU on T, which means

194 + 694 _ £ = m¥ 4 mr2 0 (__m('rH"G) V('f)>
3T a6

=1 1 m(¥*+v*6)+\(x) = E = (ONSTANT

3.6 Rigid Bodies - Spinning Top
Consider the Jvﬂow'ind d‘n’aafm

&

When we have a sftnntno top, we have 3 aaoles to describe the fop.

First, we ed to d $o : W the o
'l::esiahve ?’i the \fmo( ?ou:,ld “P“‘h} posiFon. ofthe P

0 N

) Eulw An les
ose {— -{cxeo( XS ave Sekup o that the verbical s in, the divecion of the
Ved'of PR (k gt vector K) and oH\e'( 2 ave plare perpendfcular o the verkical one.




) Rotate avound verbicl axis an angle of ¢I "
Let K¢ hephe&er& an, anticlockwise votation, atound the axis &3 {'k«oudk an andlc (f

ng)=5

ii) Wnder Yotation 1), the axis in, the diveckion _Q(f) % vobofed fo a new Posf{"c’o»\, s I

6 Next &s fo vobake through on anple © avound the new ey, Let Ry herfcsen{' an, anki-
clockuise votation amuno\ the Vaxis ¢f {kvovok an av\ale 6

—%f\ ed-K
5)

&
i) Wnder the votation, 117, & is vobaked fo a new position, oy e and it % useful o
choose this as the .somw\&fa of the JcoP.

v) Next skep @s to let Ry, vepreseat aq anticlockwise Yotalion, avound the axis ef through
P g Yep i
an onole A

fired axes P'(ir\dpal axes

& 7
So the oviginal axis _ggf'), s_:(.°), .g(o) are votated toeq,e,, €5 -j-?xeel " the top (sUnMe{ﬁcJ)

and &3 {sVthe axis of soumejcvv.
Thas cmbiv\ino these char\oes from, the fixed axes fo ?vi,v\dpa‘ oxes of the .spirmino fop ® 'Yey-(esm{'eJ

"t

R: R,?Kek‘p

The (molcs ¢, 0 and Y are Euler Anoles.



lggozm ab';\uék of Pu. id Bodo section, 1.13, we identify the 3 wmponents of anau‘av Ve‘oﬁ{'U A

RR
\Db{{evenhn{uo R usm p-roduc{' vule )
R= (RgRoR. + RgRoRy + R¢R6RY)
and Calcu\\ajcino {Yov\syosc
(vwkek*) = /Ry
[Ckeck RE = K¢K¢K*K K? ']l]

1|.
Thevefore we 0& that

RR'= RRK+KRR+RRR)(RRR
( .Vf ve cp 6 4’) )Msir\ that
I A 4 0
= P\R—KYR,‘,+ RRoR Ry + RyR Ry Ry ROR, RR'=4
(xR)

To finish the computation Yequiives explict expession, fov the votakion mabvices. These ave
| <COS\f sin g i (16 Oe Oe i Cosg sind 0

= [-Siny (oS = (oSO Sin =(-$in@ cosp O
t 0 ) 0o 1 © 0 -5in® cos® ¢ 0 O¢ 1

Tkm;}on we Gc{' thet

YK\Y-<—- 232‘1 i‘iﬁy §>\¥<ﬁ‘tf -S%ﬁf o )
0 .« _[0yo
(‘6 > R*KY'('J gg)

)| el

[ K‘YK“T-- o)

0
¢
0

oS o<
oo O

63"\:‘,10\{(”

° T O
RoRE=(0 0

o @O

-6

oo

¢
0
0




And bﬂ wbsl—u%v«hov\, inbo (¥R) RK we ﬂc{'

+ 0 cosO 6 sin —dzcvs sind
RR < - - ¢co&9 ‘Y ¢C 6w§k‘,+¢6i'\:‘lr‘s“h\e) (*R?)
- Gsind + Pusysing - ews-\[f ¢.su\'~fsm0 0

and Jvom, Section, L.15 Rzoaal Bodies, RR" s anlisommc&ric, and  hence

(R€) = ¢ w,(t)
2N

ab abe ©

and thevefore
. T 0 Wy -w
RR = "ws O wi

W, -w; 0

n0u|m( veloaties

(xR3)

(omparin (*R7> and [« R3) to get
P a d
w, = écos'\y + é.siq'\fsi.v\e y Wy —ésiw + q')wS\fsir\e y W3S '\%4- (f)(,ose

1
Now deviving Kinebic Eneray: ares of symme
ustnd the Pri,mczyal moments of Inerbia Iu L,=A I&‘:‘.C

ke= 30k 41,00
= [KE=1¢ ("H ?§C059)2+-2L_A(é1+¢25‘-"|19)

,MN_AM\O _pofenl:c'al er\erJU !

For a bypical .s m%w,ca,q {:or the cen{'cf MAas$
(s a dQche L 4vom, the {—u(e({ point  and .Sc.JmafeJ
a(ond the sommef% OXGS-

/

lf top has mass M,
V= Maﬂcos@




Thevefove pv\Hiv\O it all %oaefker, we aef the Loomnoiaq for the .snmme{vic top o
i(¢9 G'Y; ‘f:é'“.f') =K-V

::> j\(fﬁpelw'(};féﬂf): —;_(C('\.f""‘}c"se?""‘\(éz*‘%l@'\zf?)) _Mofws('?




